
These are lecture notes for an introductory course on probability taught as part of the first
year’s program at École des Ponts ParisTech. This course is currently under the direction
of Aurélien Alfonsi (CERMICS) and based on the following textbook:

B. Jourdain, Probabilités et statistique, Ellipses 2009, 2nd edition 2016.

Chapter 2

Discrete random variables

2.1 Probability measure
From now on, we consider a random experiment which may have infinitely many possible
outcomes. The set of all possible outcomes of this experiment is still called sample space
and denoted Ω. In the present lesson we will call event any subset of Ω. For the sake of
accuracy, let us mention that this definition actually raises an issue when Ω is uncountably
infinite. The power set P(Ω) is indeed proven to be “too big” to be considered as the set of
events in many natural settings. One of the main troubles is the possible non-existence of a
satisfying probability measure on P(Ω). Therefore, we must restrict the set of events to a
subset of P(Ω). Such a set must be compatible with the usual operations on sets, namely
the complement, union and intersection, which leads to the definition of a σ-algebra.

Definition 2.1.1 (σ-algebra). A σ-algebra on a set Ω is a class A of subsets of Ω (A ⊂
P(Ω)) such that

(i) Ω ∈ A ;

(ii) If A ∈ A, then A{ ∈ A ;

(iii) If for all n ∈ N, An ∈ A, then
⋃
n∈N

An ∈ A.

We then say that (Ω,A) is a measurable space.

For the sake of accuracy again, let us mention that a map between two measurable spaces
is in general not compatible with their respective underlying σ-algebras, hence the following
definition.

1

https://www.editions-ellipses.fr/probabilits-statistique-dition-p-11186.html


Definition 2.1.2 (Measurable map). Let (E, E) and (F,F) be two measurable spaces. We
call measurable map between (E, E) and (F,F) any map f : E → F such that

∀B ∈ E , f−1(B) = {x ∈ A | f(x) ∈ B} ∈ E .

From now on, we will consider that the sample space Ω is endowed with a σ-algebra A
which is seen as the set of events. One should then consider in order to be accurate that
A ⊂ Ω is an event iff A ∈ A. However, all the σ-algebras we will encounter in the present
lesson will always be big enough to contain all the subsets we will consider. Therefore, we
will still call event any subset of Ω. For similar reasons, we will purposely never worry about
the measurability of a function, as all the functions encountered in the present lessons will
be measurable. Definitions 2.1.1 and 2.1.2 can therefore be ignored at first reading.

Definition 2.1.3 (Probability measure). A probability measure on a sample space Ω is a
map P from the set of events to [0, 1] such that

(i) P(Ω) = 1 ;

(ii) If (Ai)i∈I is an at most countable disjoint family of events, then

P

(⋃
i∈I
Ai

)
=
∑
i∈I

P(Ai).

If A denotes the class of events, then we say that (Ω,A,P) is a probability space.

Remark 2.1.4. A map P which satisfies (ii) is called σ-additive.

Throughout the rest of the present chapter and the next ones and unless explicitly men-
tioned otherwise, (Ω,A,P) will always refer to a probability space such that

– Ω is the sample space we work on;

– A is the class of events (which can be harmlessly considered to be the power set P(Ω));

– P is the probability measure which measures the likelihood of each event.

Except for the uniform distribution, the definitions and propositions given in the previous
chapter for a finite sample space hold for a general sample space, including the notions of
conditional probability, independence and Bayes’ theorem.

2.2 Discrete random variables

2.2.1 Definition
We introduce here the fundamental notion of random variable, which is an expression whose
value depends on the outcome of a random experiment. In this chapter we only consider
random variables which have finitely or countably infinitely many different possible values.
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Definition 2.2.1 (Discrete random variable). A discrete random variable is a (measurable)
map X : Ω→ E where E is an at most countable set.

For any event A, we denote

{X ∈ A} = X−1(A) = {ω ∈ Ω | X(ω) ∈ A}.

The family (P({X = x}))x∈E is called the probability distribution of X.

Example 2.2.2. Let A be an event. We recall that the indicator function of A is defined
by

∀ω ∈ Ω, 1A(ω) =
{

1 if ω ∈ A
0 else .

Therefore, 1A : Ω→ {0, 1} is a discrete random variable.

Definition 2.2.3 (Equality in distribution). Let E be an at most countable set and X : Ω→
E and Y : Ω → E be two discrete random variables. We say that X and Y are equal in
distribution if the probability distribution of X is equal to the probability distribution of Y ,
that is

∀z ∈ E, P({X = z}) = P({Y = z}).

In that case, we denote X d= Y .

2.2.2 Independence
Definition 2.2.4 (Independence). Let E and F be two at most countable sets. Two random
variables X : Ω→ E and Y : Ω→ F are said to be independent if

∀(x, y) ∈ E × F, P({X = x, Y = y}) = P({X = x})P({Y = y}).

In that case, we denote X ⊥⊥ Y .

We already saw in the previous chapter a notion of independence which concerns events.
Those two notions coincide in the following sense: the event A is independent of the event
B iff the random variable 1A is independent of the random variable 1A.

Definition 2.2.5 (Independence). Let n ∈ N
∗. For 1 ≤ k ≤ n, let Ek be an at most

countable set and Xk : Ω→ Ek be a discrete random variable. The family of discrete random
variables (Xk)1≤k≤n is said to be mutually independent if

∀(x1, · · · , xn) ∈ E1×· · ·×En, P({X1 = x1, · · · , Xn = xn}) = P({X1 = x1})×· · ·×P({Xn = xn}).

We say that a family (Xi)i∈I of discrete random variables is mutually independent if any
finite subfamily of (Xi)i∈I is mutually independent.

We say that a family (Xi)i∈I of discrete random variables is pairwise independent if for
all i, j ∈ I such that i 6= j, Xi is independent of Xj.
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Remark 2.2.6. If (Xi)i∈I is mutually independent, then it is pairwise independent, but the
converse in not true.

Definition 2.2.7 (i.i.d.). A family of discrete random variables is called independent and
identically distributed, usually abbreviated i.i.d., if this family is mutually independent and
all its elements are equal in distribution.

2.2.3 Common discrete probability distributions
We present here the most common discrete probability distributions.

2.2.3.1 The degenerate univariate distribution

Definition 2.2.8. Let α ∈ R. We say that a discrete random variable X follows the degen-
erate univariate distribution with parameter α if

P({X = α}) = 1.

In that case, we denote X ∼ δα.

The degenerate univariate distribution is the distribution of an almost constant discrete
random variable. It is a way to see a deterministic variable as a particular case of random
variable.

2.2.3.2 The Bernoulli distribution

Definition 2.2.9. Let p ∈ [0, 1]. We say that a discrete random variable X follows the
Bernoulli distribution with parameter p if

P({X = 1}) = p and P({X = 0}) = 1− p.

In that case, we denote X ∼ B(p).

Remark 2.2.10. – For any event A, 1A ∼ B(P(A)).

– X follows the Bernoulli distribution with parameter p iff

∀x ∈ {0, 1}, P({X = x}) = px(1− p)1−x.

– B(0) = δ0 and B(1) = δ1.

The Bernoulli distribution models a random experiment which has two possible outcomes:
head or tail, true or false, yes or no, etc. This kind of experiment is called a Bernoulli trial.
When it makes sense, we usually interpret the event {X = 1} as the success of the experiment
and {X = 0} as the failure. Therefore, p is often interpreted as the probability of success of
a Bernoulli trial.
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2.2.3.3 The binomial distribution

Definition 2.2.11. Let n ∈ N
∗ and p ∈ [0, 1]. We say that a discrete random variable X

follows the binomial distribution with parameters n and p if

∀0 ≤ k ≤ n, P({X = k}) =
(
n

k

)
pk(1− p)n−k.

In that case, we denote X ∼ B(n, p).
Remark 2.2.12. B(1, p) = B(p).
Proposition 2.2.13. Let n ∈ N

∗ and p ∈ [0, 1]. Let X : Ω → N be a discrete random
variable and X1, · · · , Xn be i.i.d. random variables, each having a Bernoulli distribution
with parameter p. Then

X ∼ B(n, p) ⇐⇒ X
d= X1 + · · ·+Xn.

Proof. Let us show that X1 + · · · + Xn ∼ B(n, p). Let k ∈ {0, · · · , n}. By σ-additivity,
mutual independence of (Xi)1≤i≤n and Remark 2.2.10, we have

P({X1 + · · ·+Xn = k}) = P

 ⋃
x1,··· ,xn∈{0,1}
x1+···+xn=k

{X1 = x1, · · · , Xn = xn}


=

∑
x1,··· ,xn∈{0,1}
x1+···+xn=k

P({X1 = x1, · · · , Xn = xn})

=
∑

x1,··· ,xn∈{0,1}
x1+···+xn=k

P({X1 = x1})× · · · × P({Xn = xn})

=
∑

x1,··· ,xn∈{0,1}
x1+···+xn=k

px1(1− p)1−x1 × · · · × pxn(1− p)1−xn

=
∑

x1,··· ,xn∈{0,1}
x1+···+xn=k

pk(1− p)n−k

= C × pk(1− p)n−k,

where C is the cardinality of the set {(x1, · · · , xn) ∈ {0, 1}n | x1 + · · ·+ xn = k}. Choosing
x1, · · · , xn ∈ {0, 1} such that x1 + · · ·+ xn = k is equivalent to assigning 1 to k components
of a vector of {0, 1}n and 0 to the n − k other components. The latter is itselft equivalent
to choosing k elements among n. We deduce that C =

(
n
k

)
. This proves that X1 + · · ·+Xn

follows a binomial distribution with parameters n and p. Therefore, X ∼ B(n, p) iff X is
equal in distribution to X1 + · · ·+Xn.

The best understanding of the binomial distribution is given by Proposition 2.2.13. For
X ∼ B(n, p), P(X = k) is the probability that exactly k successes occur in n independent
Bernoulli trials.

5



2.2.3.4 The Poisson distribution

Definition 2.2.14. Let λ > 0. We say that a discrete random variable X follows the Poisson
distribution with parameter λ if

∀n ∈ N, P({X = n}) = e−λλ
n

n! ·

In that case, we denote X ∼ P(λ).

A random variableX which describes the number of events which happen during a certain
time interval is typically modeled by a Poisson distribution.

2.2.3.5 The geometric distribution

Definition 2.2.15. Let p ∈ (0, 1]. We say that a discrete random variable X follows the
geometric distribution with parameter p if

∀n ∈ N∗, P({X = n}) = p(1− p)n−1.

In that case, we denote X ∼ Geo(p).

Remark 2.2.16. Geo(1) = δ1.

Proposition 2.2.17. Let p ∈ (0, 1]. Let (Xn)n∈N∗ be a family of i.i.d. random variables,
each having a Bernoulli distribution with parameter p. Then

X ∼ Geo(p) ⇐⇒ X
d= inf{n ∈ N∗ | Xn = 1}.

Proof. Let G = inf{n ∈ N
∗ | Xn = 1}. Let us show that G ∼ Geo(p). Let n ∈ N

∗. By
definition of the infimum and mutual independence of (Xk)k∈N∗ , we have

P({G = n}) = P({X1 = 0, · · · , Xn−1 = 0, Xn = 1})
= P({X1 = 0})× · · · × P({Xn−1 = 0})× P({Xn = 1})
= (1− p)n−1 × p,

so G ∼ Geo(p). Therefore, X ∼ Geo(p) iff X d= G.

Proposition 2.2.17 gives us a better understanding of the Geometric distribution. For
X ∼ Geo(p), P(X = n) is the probability that exactly n attempts are needed to witness the
first success in a series of independent Bernoulli trials.
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2.2.4 Marginal distribution
Let E and F be two at most countable sets. Let X : Ω→ E and Y : Ω→ F be two discrete
random variables. Since E × F is at most countable, the map

(X, Y ) : Ω → E × F
ω 7→ (X(ω), Y (ω))

is a discrete random variable. The probability distribution of X (resp. Y ) is called first (resp
second) marginal distribution of (X, Y ). The probability distribution of (X, Y ) is called the
joint probability distribution for X and Y .

For all x ∈ E, by σ-additivity, we have

P({X = x}) = P

⋃
y∈F
{X = x, Y = y}

 =
∑
y∈F

P({X = x, Y = y}).

Similarly, for all y ∈ F , P({Y = y}) = ∑
x∈E P({X = x, Y = y}). We deduce that

the marginal distributions can be deduced from the joint probability distribution. However,
the converse is in general not true. Nevertheless let us mention that in the particular case
of independence between X and Y , the joint probability distribution can be deduced from
the marginal distributions. Indeed, if X is independent of Y , then for all (x, y) ∈ E × F ,
P({X = x, Y = y}) = P({X = x})P({Y = y}).

Exercise 2.2.18. Let E and F be two at most countable sets. Let X : Ω → E and
Y : Ω → F be two discrete random variables such that there exist c ∈ R, µ : E → R and
ν : F → R which satisfy

∀(x, y) ∈ E × F, P({X = x, Y = y}) = cµ(x)ν(y).

1. Compute c.

2. What can we say about X and Y ?

2.3 Expected value and variance

2.3.1 Expected value
Definition 2.3.1 (Expected value). Let E be an at most countable subset of R and X : Ω→
E be a real-valued discrete random variable. We say that X is integrable and denote X ∈ L1

if ∑
x∈E
|x|P({X = x}) < +∞.

In that case, the expected value of X is denoted E[X] and defined by

E[X] =
∑
x∈E

xP({X = x}).
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Remark 2.3.2. – The integrability of X and its expected value depend only on the
probability distribution of X ;

– If E is finite, then X is integrable ;

– If λ ∈ R, then E[λ] = λ ;

– If A is an event, then E[1A] = P(A).

Proposition 2.3.3. Let X and Y be two integrable discrete random variables.

(i) Linearity: For all λ ∈ R, λX + Y is an integrable discrete random variable and

E[λX + Y ] = λE[X] + E[Y ];

(ii) Positivity and non-degeneracy: If P(X ≥ 0) = 1, then E[X] ≥ 0. If in addition
E[X] = 0, then P(X = 0) = 1.

(iii) Monotonicity: If P(X ≤ Y ) = 1, then E[X] ≤ E[Y ].

Proof. Let E and F be the two at most countable sets such that X : Ω→ E and Y : Ω→ F .

(i) Let λ ∈ R and G = {λx + y | (x, y) ∈ E × F}. The set G is at most countable, so
λX+Y : Ω→ G is a discrete random variable. Using σ-additivity for the second equal-
ity, Fubini’s theorem (for nonnegative series) for the fourth equality and the triangle
inequality for the first inequality, we have

∑
z∈G
|z|P({λX + Y = z}) =

∑
z∈G
|z|P

 ⋃
(x,y)∈E×F
λx+y=z

{X = x, Y = y}


=
∑
z∈G
|z|

∑
(x,y)∈E×F
λx+y=z

P({X = x, Y = y})

=
∑
z∈G

∑
(x,y)∈E×F

1{λx+y=z}|z|P({X = x, Y = y})

=
∑

(x,y)∈E×F

∑
z∈G

1{λx+y=z}|z|P({X = x, Y = y})

=
∑

(x,y)∈E×F
|λx+ y|P({X = x, Y = y})

≤ |λ|
∑

(x,y)∈E×F
|x|P({X = x, Y = y}) +

∑
(x,y)∈E×F

|y|P({X = x, Y = y})

= |λ|
∑
x∈E
|x|P({X = x}) +

∑
y∈F
|y|P({Y = y})

< +∞,
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so λX+Y is integrable. We now reproduce the same calculation as above but we remove
the absolute values. This time we use Fubini’s theorem for absolutely convergent series
and the triangle inequality becomes an equality, so that∑
z∈G

zP({λX + Y = z}) =
∑
z∈G

∑
(x,y)∈E×F

1{λx+y=z}zP({X = x, Y = y})

=
∑

(x,y)∈E×F

∑
z∈G

1{λx+y=z}zP({X = x, Y = y})

= λ
∑

(x,y)∈E×F
xP({X = x, Y = y}) +

∑
(x,y)∈E×F

yP({X = x, Y = y})

= λ
∑
x∈E

xP({X = x}) +
∑
y∈F

yP({Y = y})

= λE[X] + E[Y ].

(ii) If P({X ≥ 0}) = 1, then for all x ∈ E ∩ R∗−, P({X = x}) = 0, so

E[X] =
∑
x∈E

xP({X = x}) =
∑

x∈E∩R+

xP({X = x}) +
∑

x∈E∩R∗
−

xP({X = x})

=
∑

x∈E∩R+

xP({X = x}) ≥ 0.

If in addition E[X] = 0, then ∑
x∈E∩R+ xP({X = x} = 0, so for all x ∈ E ∩ R+,

xP({X = x}) = 0. We deduce that for all x ∈ E such that x 6= 0, P({X = x}) = 0, so
P({X = 0}) = 1.

(iii) If P({X ≤ Y }) = 1 then P({Y −X ≥ 0}), so by linearity and positivity, E[Y ]−E[X] =
E[Y −X] ≥ 0, hence E[Y ] ≥ E[X].

The next proposition, known as the law of the unconscious statistician, usually abbrevi-
ated LOTUS, is very useful in practice.

Proposition 2.3.4 (LOTUS). Let E be a an at most countable subset of R, X : Ω→ E be
a discrete random variable and f : E → R be a (measurable) map. Then f(X) : ω ∈ Ω 7→
f(X(ω)) is a real-valued discrete random variable. Moreover,

f(X) ∈ L1 ⇐⇒
∑
x∈E
|f(x)|P({X = x}) < +∞.

In that case,
E[f(X)] =

∑
x∈E

f(x)P({X = x}).
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Proof. Since E is at most countable, f(E) is at most countable as well, so f(X) : Ω→ f(E)
is a real-valued discrete random variable. Using σ-additivity for the second equality and
Fubini’s theorem (for nonnegative series) for the fourth equality, we have

∑
y∈f(E)

|y|P({f(X) = y}) =
∑

y∈f(E)
|y|P

 ⋃
x∈E
f(x)=y

{X = x}


=

∑
y∈f(E)

|y|
∑
x∈E
f(x)=y

P({X = x})

=
∑

y∈f(E)

∑
x∈E

1{f(x)=y}|y|P({X = x})

=
∑
x∈E

∑
y∈f(E)

1{f(x)=y}|y|P({X = x})

=
∑
x∈E
|f(x)|P({X = x}).

Therefore, f(X) ∈ L1 ⇐⇒ ∑
y∈f(E) |y|P({f(X) = y}) < +∞ ⇐⇒ ∑

x∈E |f(x)|P({X =
x}) < +∞.

Suppose now that f(X) ∈ L1. We reproduce the same calculation as above but we
remove the absolute values. This time we use Fubini’s theorem for absolutely convergent
series, so that

E[f(X)] =
∑

y∈f(E)
yP({f(X) = y}) =

∑
y∈f(E)

∑
x∈E

1{f(x)=y}yP({X = x})

=
∑
x∈E

∑
y∈f(E)

1{f(x)=y}yP({X = x}) =
∑
x∈E

f(x)P({X = x}).

Proposition 2.3.5. Let E and F be two at most countable sets and X : Ω → E and
Y : Ω→ F be two discrete random variables.

(i) If X is independent of Y , then for all (measurable) maps f : E → R and g : F → R

such that f(X), g(Y ) ∈ L1, we have f(X)g(Y ) ∈ L1 and

E[f(X)g(Y )] = E[f(X)]E[g(Y )]. (2.1)

(ii) Conversely, if (2.1) holds for all (measurable) bounded maps f : E → R and g : F → R,
then X is independent of Y .

Proof. (i) Suppose that X is independent of Y . Let f : E → R and g : F → R be
two (measurable) maps. Let h : E × F → R be defined for all (x, y) ∈ E × F by
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h(x, y) = f(x)g(y). By Fubini’s theorem for nonnegative series and independence of X
and Y , we get∑

(x,y)∈E×F
|h(x, y)|P({X = x, Y = y}) =

∑
x∈E

∑
y∈F
|f(x)g(y)|P({X = x})P({Y = y})

=
∑
x∈E
|f(x)|P({X = x})

∑
y∈F
|g(y)|P({Y = y}).

According to Proposition 2.3.4, h(X, Y ) = f(X)g(Y ) ∈ L1. Using LOTUS, Fubini’s
theorem for absolutely convergent series and independence of X and Y , we have

E[f(X)g(Y )] = E[h(X, Y )] =
∑

(x,y)∈E×F
h(x, y)P({X = x, Y = y})

=
∑
x∈E

∑
y∈F

f(x)g(y)P({X = x})P({Y = y})

=
∑
x∈E

f(x)P({X = x})
∑
y∈F

g(y)P({Y = y}) = E[f(X)]E[g(Y )].

(ii) Suppose now that (2.1) holds for all (measurable) bounded maps f : E → R and
g : F → R. Let (x, y) ∈ (E,F ). Then (2.1) for f = 1{x} and g = 1{y} writes
E[1{X=x,Y=y}] = E[1{X=x}]E[1{Y=y}], that is P({X = x, Y = y}) = P({X = x})P({Y =
y}). So X is independent of Y .

2.3.2 Variance
Definition 2.3.6 (Variance). Let E be an at most countable subset of R and X : Ω → E
be a real-valued discrete random variable. We say that X is square-integrable and denote
X ∈ L2 if ∑

x∈E
x2
P({X = x}) < +∞.

In that case, the variance of X is denoted VarX and defined by

VarX = E[(X − E[X])2].

The square root of the variance of X is called the standard deviation of X.

Remark 2.3.7. According to LOTUS, X ∈ L2 iff X2 ∈ L1.

Proposition 2.3.8. Let X be a square-integrable discrete random variable. Then

(i) X is integrable.

(ii) VarX = E[X2]− E[X]2.
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(iii) For all a, b ∈ R, aX + b ∈ L2 and

Var(aX + b) = a2 VarX.

Proof. (i) |X| ≤ 1
2(1 +X2). By hypothesis, X2 ∈ L1, so |X| is bounded from above by an

integrable random variable. Therefore, X ∈ L1.

(ii) Let µ = E[X], which is well defined according to (i). Using LOTUS, we get

VarX = E[(X − E[X])2] =
∑
x∈E

(x− µ)2
P({X = x})

=
∑
x∈E

x2
P({X = x})− 2µ

∑
x∈E

xP({X = x}) + µ2 ∑
x∈E

P({X = x})

=
∑
x∈E

x2
P({X = x})− 2µ2 + µ2 = E[X2]− E[X]2.

(iii) Let a, b ∈ R. Then (aX + b)2 = aX2 + 2abX + b2. By hypothesis and (i), aX2 ∈ L1

and 2abX ∈ L1 so the sum (aX + b)2 is integrable, hence aX + b ∈ L2. According to
(ii), we have

Var(aX + b) = E[(aX + b)2]− E[aX + b]2 = E[a2X2 + 2abX + b2]− (aE[X] + b)2

= a2
E[X2] + 2abE[X] + b2 − a2

E[X]2 − 2abE[X]− b2

= a2(E[X2]− E[X]2) = a2 VarX.

Proposition 2.3.9. Let n ∈ N∗ and X1, · · · , Xn be square-integrable discrete random vari-
ables. Then their sum X1 + · · ·+Xn is square-integrable.

If in addition (Xk)1≤k≤n is pairwise independent, then

Var
(

n∑
k=1

Xk

)
=

n∑
k=1

Var(Xk).

Proof. Expanding the square, we get

Var
(

n∑
k=1

Xk

)
= E

( n∑
k=1

Xk

)2
− E [ n∑

k=1
Xk

]2

= E

 n∑
k,l=1

XkXl

− E [ n∑
k=1

Xk

]
E

[
n∑
l=1

Xl

]

=
n∑

k,l=1
E[XkXl]−

n∑
k=1

n∑
l=1

E[Xk]E[Xl] =
n∑

k,l=1
(E[XkXl]− E[Xk]E[Xl]).

Let k, l ∈ {1, · · · , n} be such that k 6= l. By independence of Xk and Xl and Proposition
2.3.5, E[XkXl]− E[Xk]E[Xl] = 0. We deduce that

Var
(

n∑
k=1

Xk

)
=

n∑
k=1

(E[X2
k ]− E[Xk]2) =

n∑
k=1

VarXk.
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2.3.3 Moment-generating function of an integer-valued random
variable

Definition 2.3.10 (Moment-generating function). Let X : Ω→ N be a nonnegative integer-
valued random variable. We call moment-generating function of X and denote gX the map

gX :
[−1, 1] → R

u 7→ E[uX ] =
∑
n∈N

unP({X = u}) .

Proposition 2.3.11. The moment-generating function characterises the probability distribu-
tion of an integer-valued random variable: if X : Ω→ N and Y : Ω→ N are two nonnegative
integer-valued random variables, then

X
d= Y ⇐⇒ ∀u ∈ [−1, 1], gX(u) = gY (u).

Proof. Let u ∈ [−1, 1]. According to LOTUS, the value of gX(u) depends only on the
probability distribution of X. Therefore, if X d= Y , then gX(u) = gY (u).

Conversely, suppose that gX(u) = gY (u) for u ∈ [−1, 1]. Since the power series∑n≥0 u
n
P({X =

n}) has a radius of convergence of at least 1, gX is infinitely differentiable on (−1, 1). More-
over, for all k ∈ N, the k-th derivative of gX , denoted g(k)

X , satisfies

∀u ∈ (−1, 1), g(k)
X (u) =

+∞∑
n=k

n!
(n− k)!u

n−k
P({X = n}) and P({X = n}) = g

(n)
X (0)
n! · (2.2)

This implies that for all n ∈ N, P({X = n}) = g
(n)
X (0)
n! = g

(n)
Y (0)
n! = P({Y = n}), hence

X
d= Y .

Proposition 2.3.12. Let X : Ω→ N be a nonnegative integer-valued random variable.

(i) X is integrable iff its moment-generating function gX is such that limu→1− g′X(u) is
finite. In that case,

E[X] = lim
u→1−

g′X(u).

(ii) X is square-integrable iff limu→1− g′′X(u) is finite. In that case,

VarX =
(

lim
u→1−

g′′X(u)
)
−
(

lim
u→1−

g′X(u)
)2

+
(

lim
u→1−

g′X(u)
)
.

Proof. (i) According to (2.2), gX is differentiable on (−1, 1) and for all u ∈ (−1, 1), g′X(u) =∑+∞
n=1 nu

n−1
P({X = n}). The map g′X is nonnegative and nondecreasing on [0, 1), so it

has a limit l ∈ R+∪{+∞} at 1. On the one hand, for all u ∈ [0, 1), 0 ≤ u ≤ 1 so g′X(u) ≤∑+∞
n=1 nP({X = n}). For u → 1− the latter inequality yields l ≤ ∑+∞

n=1 nP({X = n}).
On the other hand, for all N ∈ N∗ and u ∈ [0, 1), ∑N

n=1 nu
n−1

P({X = n}) ≤ g′X(u). For

13



u→ 1−, this yields ∑N
n=1 nP({X = n}) ≤ l, which itself yields ∑+∞

n=1 nP({X = n}) ≤ l
for N → +∞. We deduce that

lim
u→1−

g′X(u) =
+∞∑
n=1

nP({X = n}) ∈ R+ ∪ {+∞}.

Therefore, limu→1− g′X(u) is finite iff ∑+∞
n=1 nP({X = n} is finite, in which case they are

equal.

(ii) According to (2.2), gX is twice differentiable on (−1, 1) and for all u ∈ (−1, 1), g′′X(u) =∑+∞
n=2 n(n− 1)un−2

P({X = n}). With a similar reasoning as for (i), we prove that

lim
u→1−

g′′X(u) =
+∞∑
n=2

n(n− 1)P({X = n}) ∈ R+ ∪ {+∞}. (2.3)

If X is square-integrable, then ∑+∞
n=2 n(n−1)P({X = n} ≤ ∑+∞

n=2 n
2
P({X = n}) < +∞

so limu→1− g′′X(u) is finite.
Conversely, if limu→1− g′′X(u) is finite, then∑+∞

n=2 n
2
P({X = n}) ≤ 2∑+∞

n=2 n(n−1)P({X =
n}) < +∞ so X is square-integrable.
If X ∈ L2, then (i) and (2.3) yield

lim
u→1−

g′′X(u) = E[X(X − 1)] = E[X2]− E[X] = VarX + E[X]2 − E[X]

= VarX +
(

lim
u→1−

g′X(u)
)2
−
(

lim
u→1−

g′X(u)
)
.

Proposition 2.3.13. Let X : Ω → N and Y : Ω → N be two nonnegative integer-valued
random variables. If X is independent of Y , then

∀u ∈ [−1, 1], gX+Y (u) = gX(u)gY (u).

Proof. Let u ∈ [−1, 1]. If X if independent of Y , then by Proposition 2.3.5, we have

gX+Y (u) = E[uX+Y ] = E[uXuY ] = E[uX ]E[uY ] = gX(u)gY (u).

2.3.4 Review of common discrete probability distributions
We end the present chapter by enumerating the main properties of the probability distribu-
tions given in Section 2.2.3.

Proposition 2.3.14. Let p ∈ [0, 1], n ∈ N∗, λ > 0, u ∈ [−1, 1] and X be a discrete random
variable.
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(i) If X ∼ B(p), then

E[X] = p, VarX = p(1− p) and gX(u) = 1− p+ pu.

(ii) If X ∼ B(n, p), then

E[X] = np, VarX = np(1− p) and gX(u) = (1− p+ pu)n.

(iii) If X ∼ P(λ), then

E[X] = λ, VarX = λ and gX(u) = eλ(u−1).

(iv) If p 6= 0 and X ∼ Geo(p), then

E[X] = 1
p
, VarX = 1− p

p2 and gX(u) = pu

1− (1− p)u ·

Proof. (i) Suppose X ∼ B(p). Then

E[X] = 0× (1− p) + 1× p = p;
VarX = E[X2]− E[X]2 = 02 × (1− p) + 12 × p2 − p2 = p(1− p);
gX(u) = u0 × (1− p) + u1 × p = 1− p+ pu.

(ii) Suppose X ∼ B(n, p). Let X1, · · · , Xn be i.i.d. discrete random variables, each heaving
a Bernoulli distribution with parameter p. According to Proposition 2.2.13, X d=
X1 + · · ·+Xn, so using (i), Proposition 2.3.9 and Proposition 2.3.13, we have

E[X] = E[X1 + · · ·+Xn] = E[X1] + · · ·+ E[Xn] = np;
VarX = Var(X1 + · · ·+Xn) = VarX1 + · · ·+ VarXn = np(1− p);
gX(u) = gX1+···+Xn(u) = gX1(u)× · · · × gXn(u) = (1− p+ pu)n.

(iii) Suppose X ∼ P(λ). Then

E[X] =
+∞∑
n=0

ne−λλ
n

n! = e−λ
+∞∑
n=1

λn

(n− 1)! = λe−λ
+∞∑
n=0

λn

n! = λe−λeλ = λ;

E[X(X − 1)] =
+∞∑
n=0

n(n− 1)e−λλ
n

n! = e−λ
+∞∑
n=2

λn

(n− 2)! = λ2e−λ
+∞∑
n=0

λn

n! = λ2;

VarX = E[X2]− E[X]2 = E[X(X − 1)] + E[X]− E[X]2 = λ2 + λ− λ2 = λ;

gX(u) =
+∞∑
n=0

une−λλ
n

n! = e−λ
+∞∑
n=0

(λu)n
n! = e−λeλu = eλ(u−1).
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(iv) Suppose p 6= 0 and X ∼ Geo(p). Then

gX(u) =
+∞∑
n=1

unp(1− p)n−1 = pu
+∞∑
n=0

((1− p)u)n = pu

1− (1− p)u ·

Moreover g′X(u) = p
(1−(1−p)u)2 →

u→1−
1
p
and g′′X(u) = 2p(1−p)

(1−(1−p)u)3 →
u→1−

2(1−p)
p2 . We deduce

from Proposition 2.3.12 that

E[X] = 1
p

;

VarX = 2(1− p)
p2 − 1

p2 + 1
p

= 2(1− p)− 1 + p

p2 = 1− p
p2 ·
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