These are lecture notes for an introductory course on probability taught as part of the first
year’s program at Ecole des Ponts ParisTech. This course is currently under the direction
of Aurélien Alfonsi (CERMICS) and based on the following textbook:

B. Jourdain, Probabilités et statistique, Ellipses 2009, 2nd edition 2016.

Chapter 3

Continuous random variables

3.1 Continuous random variables

3.1.1 Definition

We saw in the previous chapter the concept of discrete random variable, which models a value
which depends on the outcome of a random experiment. However, this concept reaches its
limits when it comes to a whole continuum of possible outcomes, typically an interval of
R. Suppose for instance that you expect someone that could arrive at any moment before
an hour. Let T be his arrival time. Modelling T" be a discrete random variable would be
inadequate since it could not catch all the uncountably many possible values in the interval
[0,1]. Indeed, say that any time of arrival between 0 and 1 is equally likely to happen, so
that there would exist € > 0 such that for all ¢ € [0,1], P({T = t}) = e. Let n € N be such
that £ > 1/10". Then by o-additivity,

1=P{T €[0,1]}) >P ( U {T= k/m"}) — % P({T =k/10"}) = 10" > 1,

1<E<10™

which is nonsense. In a effort to address this shortcoming we introduce the notion of con-
tinuous random variable.

Definition 3.1.1 (Continuous random variable). A real-valued random variable is a (mea-
surable) map X : Q — R.
Let p: R — Ry be a (measurable) nonnegative map such that [ p(z)dx = 1. We say that
a real-valued random variable X has a probability density function (often abbreviated PDF)
pif .
Va,b € R such that a <b, P({a< X <b}) = / p(z) d. (3.1)

a
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We call continuous random variable any real-valued random variable which has a PDF.

Remark 3.1.2. Definition 3.1.1 remains unchanged if one replaces (3.1) with one of the
three following assertions:

(i) Ya,b € Rsuch that a <b, P({a < X <b}) = [’ p(z)dz;
(ii) Va,b € R such that a <b, P({a < X <b}) = [P p(z) dx;
(iii) Va,b € R such that a <b, P({a <X <b}) = [’ p(z)dz.

The following proposition illustrates a major contrast between discrete and continuous
random variables.

Proposition 3.1.3. Let X be a continuous random wvariable and E C R be an at most
countable subset of R. Then
P{X € E})=0.

In particular, for all v € R, P{X =z}) = 0.
Proof. Let p be the PDF of X and x € R. By definition of a probability density function,
for all n € N¥,

PU{X = 2}) <P (x - i <X < x) = [ 1,2 (0ly) dy.

By the dominated convergence theorem, the right-hand side converges to 0 when n —
+00, hence P({X = z}) = 0. By o-additivity, we have

P{X € B}) = Y. P({X =1}) = 0.

zel

3.1.2 Common continuous probability distributions
3.1.2.1 The continuous uniform distribution

Definition 3.1.4. Let a,b € R be such that a < b. We say that a continuous random variable
X follows the continuous uniform distribution on [a,b] if X has the PDF p defined by

1 LG a<ax<b
Vx € |R, p(l’) = mﬂ_[a,b}(l') = { f - - .

In that case, we denote X ~ U([a,b]).

The continuous uniform distribution on [a, b] models a situation in which all intervals of
[a, b] of same length are equally likely to happen.



3.1.2.2 The exponential distribution

Definition 3.1.5. Let A > 0. We say that a continuous random variable X follows the
exponential distribution with parameter \ if X has the PDF p defined by

az e if >0
Vr € R, p(l’):)\€)\:ﬂ.{x>0}:{ 0 2; r<0

In that case, we denote X ~ E(N).

3.1.2.3 The normal distribution

Definition 3.1.6. Let y € R and 0 > 0. We say that a continuous random variable X
follows the normal (or Gaussian) distribution with parameters u and o® if X has the PDF

p defined by
1 x — p)?
Vx € [R7 p(l’) = 27T0_2 exXp <—(20_2)> .

In that case, we denote X ~ Ni(u,0?). The particular case N1(0,1) is called the standard
normal distribution.

3.1.2.4 The Cauchy distribution

Definition 3.1.7. Let a > 0. We say that a continuous random variable X follows the
Cauchy distribution with parameter a if X has the PDF p defined by

a

In that case, we denote X ~ C(a).

3.1.3 Cumulative distribution function

Definition 3.1.8 (Cumulative distribution function). Let X be a real-valued random vari-
able. We call cumulative distribution function of X, often abbreviated CDF, the map Fx
defined by

Ve eR, Fx(z)=PH{X <z}).

The next proposition clarifies the connection between PDF and CDF.
Proposition 3.1.9. Let X be a real-valued random variable.

(i) If X has the PDF p, then Fx is the antiderivative of p which converges to 0 at —oo
and 1 at +o00, that is

FX::EEIRr—)/ p(y) dy.

In particular, Fx is continuous.



(ii) Conversely, if Fx is continuous and piecewise continuously differentiable, then X has
the PDF' FY%.

Proof. (i) Let z € R. For all n € N*,
P{e—n<X <a}) = [ LuonaWp(y) dy.

For n — 400, the left-hand side converges to P({X < z}) and the right-hand side
converges to [z Lry<23p(y) dy, hence Fx(z) = [ p(y) dy.

(ii)) Let a,b € R be such that a < b. Then {X <b} ={X <a}U{a < X < b}, where the
union is disjoint. So P({X <b}) = P{X <a})+ P({a < X <b}). Therefore,

P({a < X <b}) = Fx(b) — Fx(a).

Since Fx is continuous and piecewise continuously differentiable, we have Fx(b) —
Fx(a) = [° Fi(z)dr. We deduce that P({a < X < b}) = [ Fi(z) dz, which means
by definition that F% is the PDF of X.

m

Proposition 3.1.10. Two continuous random variables X and Y have the same PDF iff
they have the same CDF. In that case, we denote X Ly,

Remark 3.1.11. This equivalence also holds in the discrete setting, namely two discrete
random variables are equal in distribution iff their CDF are equal.

3.2 Expected value and variance

Definition 3.2.1 (Expected value). Let X be a continuous random variable with PDF p.
We say that X is integrable and denote X € L' if

/[R |z|p(z) dx < 4o00.
In that case, the expected value of X is denoted E[X| and defined by
E[X] :/xp(x) dx.
R

Definition 3.2.2 (Variance). Let X be a continuous random variable with PDF p. We say
that X is square-integrable and denote X € L? if

/ *p(r) dr < +o0.
R

In that case, the variance of X is denoted Var X and defined by
Var X = E[(X — E[X])?].

The square root of the variance of X is called the standard deviation of X.
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All the properties of the expected value (linearity, positivity, non-degeneracy, monotonic-
ity) and the variance seen in the previous chapter hold in the continuous setting.

Proposition 3.2.3. Let X and Y be two integrable continuous random variables.
(i) Linearity: For all A € R, AX +Y is an integrable random variable and
EAX + Y] = AE[X] + E[Y];
(ii) Positivity and non-degeneracy: If P(X > 0) = 1, then E[X] > 0. If in addition
E[X] =0, then P(X =0) = 1.
(117) Monotonicity: If P(X <Y) =1, then E[X] < E[Y].

Remark 3.2.4. In fact, the random variable AX +Y may not have a PDF (take for instance
A= —1land X =Y). Then the equality E[AX +Y] = AE[X]|4+E[Y] can be used as a definition
of the expected value of the random variable AX + Y.

3.3 Characterisations of a continuous probability dis-
tribution

3.3.1 The method of transformations

Theorem 3.3.1. Let X be a real-valued random variable and p : R — Ry be a (measurable)
nonnegative map such that [ p(x)dx = 1.

(i) If X has the PDF p, then for all (measurable) map f: R — R,

f(X)e L' — /R]f(a:)]p(x) dz < +0o0.

In that case,
Elf(X0)) = [ fla)p()da. (3.2
(i) Conversely, if (3.2) holds for any (measurable) bounded map f : R — R, then p is the
PDF of X.

Remark 3.3.2. Once again, f(X) may not have a PDF (take for instance f : x — 0). Then
(3.2) can be used as a definition of the expected value of the random variable f(X).

The use of Theorem 3.3.1 in order to determine the probability distribution of a random
variable is called method of transformations.

Exercise 3.3.3. Let U ~ U([0,1]), A > 0 and X = —{ InU. Find the probability distribu-
tion of X.

Exercise 3.3.4. Let 4 € R, 02 > 0 and X ~ N(u,d?).
1. Find the law of Y = %

2. Deduce the value of E[X] and Var X.



3.3.2 Characteristic function and Laplace transform

Definition 3.3.5 (Characteristic function). Let X be a real-valued random variable. We
call characteristic function of X and denote ®x the map

R —- C

Oy u — E[eX] T

Notice that ®x(0) = 1 and for all u € R, ®x(—u) = Px(u). Moreover, the Fourier
inversion theorem implies the following proposition.

Proposition 3.3.6. Let X be a real-valued random variable. If ®x is integrable on R, that
is g |Px(u)| du < 400, then X has the PDF p defined by

Ve eR, p(z)= 1/ e Py (u) du.

21 JR

The characteristic function characterises the probability distribution of a real-valued
random variable.

Proposition 3.3.7. Let X and Y be two real-valued random variables. Then
XLy « VueR, Ox(u)=oy(u).

Definition 3.3.8 (Laplace transform). Let X : Q — R, be a nonnegative-valued random
variable. We call Laplace transform of X and denote Lx the map

Ry — R4

Lty o gl

The Laplace transform characterises the probability distribution of a nonnegative-valued
random variable.

Proposition 3.3.9. Let X : Q — R, and Y : Q — Ry be two nonnegative-valued random
variables. Then

X2Y < VAeR,, Lx(\)=Ly(\).

3.3.3 Summary of characterisations of a probability distribution
We saw several propositions of the form

X2LY < Vfec, Ef(X)]=E[f(Y), (3.3)
where C is a class of functions from R to R.

— When C is the set of (measurable) bounded functions from R to R, (3.3) is the method
of transformations (Theorem 3.3.1).



— When C = {2z — 1;<q) | a € R}, (3.3) is the characterisation by CDF (Proposition
3.1.10).

— When C = {z — ¢ | u € R}, (3.3) is the characterisation by characteristic functions
(Proposition 3.3.7).

— When C = {z +— ¢ | A € R.} and X and Y are nonnegative-valued, (3.3) is the
characterisation by Laplace transforms (Proposition 3.3.9).

— When C = {z — s” | s € [-1,1]} and X and Y are nonnegative integer-valued, (3.3)
is the characterisation by moment-generating functions (see the previous chapter).

3.4 Review of common probability distributions

We end the present chapter by enumerating the main properties of the probability distribu-
tions given in Section 3.1.2.

Proposition 3.4.1. Let a,b € R be such thata < b, A >0, pn €R, 02 >0, a >0, x € R,
u€eR,te Ry and X be a continuous random variable.

(i) If X ~U([a,b]), then

a+b b—a)? T
E[X] = —— Var X = ¢ 12), Fx () = 1jap(x)

elub — ¢iua _ sin((b—a)u/2) o0
iu(b —a) (b—a)u/2

a 1 (2)
o)\ T
b—a (b,400)

and Px(u) =

(ii) If X ~ E(N), then

(iii) If X ~ Ni(u,0?), then

1.2, 2

FX]=p, VarX =0 and ®x(u)= " 27",
(iv) If X ~C(«), then

1 1
X ¢ L, Fx(z)= 3 + —arctan (x) and Px(u) = e lul

™ a



Proof. (i) Suppose X ~ U([a,b]). Then

/ ¥ —a®  a+b
b—a a 2(b — a) 2
/ b3—a3_a2+ab—|—b2‘
b—a a 3(b—a) 3 7
b+ v? b)? 2 2ab+ b2 b—a)?
VarX:[E[X2]—[E[X]2:a 4+ ab + _<G+) :a ab + :( a,)’
3 4 12 12
1 0 if x<a
;c):/ =gy { et it a<a <
— 1 if x>0b
/ giuw _ piub _ giua _ eiu(b+a)/2 eiu(b—a)/2 _ e—iu(b—a)/Q .
b—a a iu(b—a) iu(b—a) ’
_ giulbta)/2 sin((b — a)u/2)
(b—a)u/2
(ii) Suppose X ~ &E(N). Then
+00 too d (—we A — LeA® 1 +o0
E[X] = / e N dr = / ( ) dx = [—xe)‘x — —e ™
0 0 dx 0
+o0 too d (—2xe™ ™ — LA _ g2eA®
E[X?] :/ z*Ne N dx:/ ( A X )dx
0 0 dx
2 -z 2 -z 2 —Az oo 2
= —X.flfe — pe xr e . = ﬁ,
2 1 1
Foo 0 if <0
_ —Ay — =
FX(I)_/O :ﬂ'{yﬁx}/\e dy_{ 1_6—)\x if >0 °
For z € (iR)UR_,
Z. +eo ZX — AT A z— xX (0.0 A
[E[eX]:/O e )\e’\dxziz_)\[e( A& =3

We deduce @y (u) = 2 and Lx(t) = )\%t

(iii) Suppose Y ~ N;(0,1). Then

—x2/2 1
_ x fx2/2d — _ 1 / d(e ) dr = — —x2/2 Foo =0:
rvar T T Vamk de YT U ] !

2
2 [ U a2 g, 1/ 2?2 T ) g
] /[R\/27re * V27 JR ¢ dx o
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(iv) Suppose X € C(a). Then |z|-

1 2 1 >
= | ——e " Pdr — ——[ze " AT =1-0=1;
e x xe ;
/[R V2T V 27T[ I
VarY =E[Y) - E[Y] =1-0=1;

(I)Y U zuz 12/2

- ke

Leibniz’s rule for differentiation under the integral sign yields

eluz—a /2) ' )
D ( dr = et 2 g

1
7
( wostiz 2 <e“””””2/2)) dr

_\/%/

\/ 2T dx
u UT—T 4 UT—T [e's)
= —7% & e 2/2 dr — 7%[6 2/2]1_00 = —Uq)y<lt)

We deduce that there exists C' € R such that ®y (u) = Ce /2, Then @y (0) = C = 1,
hence @y (u) = e /2,

Suppose now X ~ Nj(u,0%). Let Y = (X — u)/o. Then Y ~ N;(0,1) (see Exercise
3.3.4) and X = oY + p. Based on the above equalities, we get
EX]|=EoY +pul=0x0+4+pu=yu;
Var X = Var(oY +u) = o*VarY = o* x 1 = 0%

(I)X(u) = [E[eiuX] — [E[ez‘ucrY+iuu] — eiu“q)y(au) . ew“e,(, 242/2 ewﬂfﬂf u

~ |z =400 %, which is not integrable on R.

x2+a2)
Therefore, X ¢ L'. In addition,
@ a 1 [ d(arctan(y/a)) 1
F :/ ————ﬂz:f/ dy = ~[arct z
X('r) e ﬂ_(yg + (12) Y 7w Jr dy Y ﬂ_[CL’f‘C an(y/a>] ]

- i(arctan(x/a) —(=7/2)) = ; + iarctan(x/a).

Let Y be a continuous random variable with PDF p defined by p: y € R — %e—aly\.
We have

d _ iuya —aly| dy = a 0 iuerayd too iuyfayd
y(u) = ege v=51/ ¢ Y+ e y

0 +o0
— 2 { 1 ez‘uy—f—ay} + { 1 eiuy—ay — g < 1 . 1 >
oo ) 0 2 \iu+a  u—a«

2 W+ U — o

042

a? +u?



The map Py satisfies [ [Py (u)|du < 400, so by Proposition 3.3.6, for all y € R,

:aalyzl/ ) d:g/ —iuy @ d:gq) _
ply) = 5¢ or Jo & O du =5 ey = 5 Bx (=),

We deduce that ®x(u) = el
[l

We also complete the previous chapter by giving the expressions of the CDF, character-
istic function and Laplace transform of common discrete probability distributions.

Proposition 3.4.2. Letp € [0,1], n e N*, A >0, 2 € R, u € R, t € Ry and X be a discrete
random variable.

(i) If X ~ B(p), then
Fx(z) = (1=p)Lio1) (@) + 11 400y (@),  Px(u) =1—p+pe™ and Lx(t)=1—p+pe .

(ii) If X ~ B(n,p), then

=]
n - U\ N
Frt) = 3 (1 J0H0 = 0 L0 + Ty 01, ) = (1 6 )
k=0
and Lx(t)=(1—p+pe )™
(iii) If X ~ P(N), then
Dy(u) =MD and Ly(t) =MD,

(iv) If p# 0 and X ~ Geo(p), then

U —t

Fx(z) = (1=(1—p)*h1 By(u) = — L Ly(t) = — P
X(x) ( ( p) ) {z=>1}s X(u) 1— (1 —p)em and X(t) 1 (1 _p)e_t
Proof. (i) Suppose X ~ B(p). Then
0 it <0
Fx(z)=P{X <z}=¢ P{X=0})=1—p if 0<z<1 .
1 if z>1

For z € (iR) UR_, we have
E[e**] = (1 — p)e® + pe® = 1 — p + pe*.
We deduce that @y (u) =1 —p+pe™ and Lx(t) =1 —p+ pe .
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(ii) Suppose X ~ B(n,p). Then

Fy(x) = P{X < 2}

0 if x<0
= PUX €0, e} =2 ()P —p)n " if 0<wz<n .
1 if z>n
Let Xy,---, X, bei.i.d. discrete random variables, each having a Bernoulli distribution
with parameter p. Then X 2 X1+ -+ X, so by independence of X1, ---, X, and
(1), we get
@X(u) _ [E[eiu(X1+...Xn)] _ [E[eiqu] . [E[eian] _ (1 —p _‘_peiu)n;
Lx(t) = [E[e*t(XlJr'“*X”)] = [E[e*txl] e [E[e’txn] =(1—p+pe )™

(iii) Suppose X ~ P(A). Then for z € (iR) UR_, we have

+o00 A" + e )" : :
E[e*X] = Z R AN Z (Ae) — oAt A1)
n=0 n! n=0 n!
We deduce that ®x(u) = M"Y and Ly (t) = e},
(iv) Suppose p # 0 and X ~ Geo(p). Then
Fx(r) = P{X <}
B { 0 it z<1
PUX € {L {ot) =S p(L—p) ' = 1= (1 =p) if 2 >1
For z € (iR) UR_, we have
“+oo

I e (e

z

+0o0
[E[GZX] — Z eznp(l _p>n—1 — pez
n=1

We deduce that ®y(u) = % and Lx(t) = %'
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