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Crude oil procurement overview

19 crude oils on the market

8 purchase weeks *

finished products

ALddaE

How do we optimally manage the crude purchases

while taking into account delivery times and uncertainties?
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Comparing policies under uncertainty:

average and spread

Histograms of the operating margins for two policies
(higher is better)
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Outline of the presentation

1. Part I: Monthly crude oil procurement problem

2. Part ll: Time-blocks decomposition
and the multi-months procurement problem
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Outline of the presentation

1. Part I: Monthly crude oil procurement problem

1.1 Modeling of the crude oil procurement
and formulation of an optimal control problem
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Purchase and delivery timeline

stock inside | | | | | | | | | | |
the refinery ' ' 1 1

e One single delivery/consumption month M3

e Crude purchases over the two months My and M>
preceding M3
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Purchase and delivery timeline

E T

M, M M;

(Mq,1) —» (My,2) —» (My,3) —> (My,4) —» (My,1) —» (M>3,2) —> (M3, 3) —» (M2, 4) —» (M3,1)

Y ST G N T Y T N

1—2—3—>4—>5—> 66— > T ——> 8 ——>9
For ease of use we denote the timespan of the problem
T=(1,2,3,4,56,7,8)
with  t=1=(My,1) t=28=(My,4)

t* = the successor of t th=9=(Ms,1)
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We identify decision variables

Each week, a set of crudes is available for purchase

s s o = = K

My M, M

1 2 3 4 1 2 3 4 1

. \

— H4 , —— H2 —— H3 ——H5 , —— H6

o O e I R

—— By  —— Bl —— B ' — B2 '
— B3
— 12 I8 : - 16 —— L7 ——L —13 ——1
— L5
by by bs by bs b br b v,

We identify 3 types of decision

e Cargos {b,}teT represent the quantities of crude purchased
e \Volumes v represent the crude oil consumed

e Settings r of the refinery are applied during the month M3
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We identify decision variables

Each week, a set of crudes is available for purchase

e s s =

My My My
1 2 3 4 1 2 3 4 1
N
' ' ' ' ' ' ' L4
—— H4 , —— H2 ——H3 ——H5 , —— H6
o R ‘
—— B5 —— Bl —— B4 ! —— B2
—— B3
—— 12 —— L8 - 16 —— L7 ——1L1 ——13 ——11
- L5
by by bs by bs bg by bs v,

Crude oil is available in fixed quantities (full tanker)

by = (0,...,0,b7°,0,...,0,b,0,...,0) € B; C RY?

b> = 0 or 1.5 million barrels
= |By=4
bt2 = 0 or 2.3 million barrels
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We identify sources of uncertainty

e s s o ok ok k= 5]

M, My Ms
1 2 3 4 1 2 3 4 1
) ) \ h ) ) ) h )

1 1 1 1 1 1 1 L4
—— H4 H — H2 — H3 — H5 H —— H6
H ' ! ' — H1 H H
H H H H H 1 H H H

——B5 —— Bl —= Bl ! — B2 ! ' ' '
1 1 — B3 1 1 1 H H

—— 12 —— 18 -6 ——L7 —— L ——13 ——1d
H H H - L5 H H H H H

wq Wo w3 Wy W, We wy ws p

We model two sources of uncertainty

e Prices {w, }teT of all crudes at the beginning of each week t

e Price p of all products at the beginning of the month M3
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Checkpoint

We have

e specified a time structure
e identified decision variables

e identified sources of uncertainty
We will

e explicit a coupling constraint on crude purchases
e propose an economic function

e write multistage stochastic optimization problems
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Not all crudes can be processed together

e Due to the limited treatment capacity of the refinery
e Due to chemical properties making crudes incompatible

M, Mo M;
1 2 3 4 1 2 3 4 1
\
' ' ' ' ' ' ' Lg
—— H4 : — H2 —— H3 — H5 : —— H6
: | : : Ta :
——B5 ——Bl —— B4 —— B2
' ' —— B3 ' ' ' i
L I8 L6 LT L -l L
‘ ‘ N ‘ ‘ ‘
by by by by b b br bs v,r
Hi+H2+L8= X Hi+B3+L3=

Purchase exactly 3 shipments

No more than one cargo of heavy crude

No more than one cargo of light crude
No constraint on balanced crude
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Coupling constraint on the purchases

The compatible crude combinations are described by a set D

compatible combinations

> beDd CRY D| = 520
teT

where, for example

§ b,=(15,0,...,0,1.4.,0,...,0, 2 ) x 10° barrels
~—~ ~—~ ~—
teT H4 B3 L3
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Cost function

cost function

Z b, -w, + W(th,wr,p)
teT purchase costs teT
in week t

refinery cost function
(operation costs
— incomes from selling products)
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Formulation of a multistage stochastic optimization problem

min E[th S Wy + W(Z b,, v,r,p)]

{b.t,]}g teT teT
s.t Z b, €D coupling constraint
teT
b,eB,, VteT cargos availability
veV, relR management of the refinery
o(b) Co(wy,---,w), VteT
U(er) - U(Wy ) W{vp)
——
o—algebra
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Nonanticipativity constraints

The last two constraints are nonanticipativity constraints: they
represent, in mathematical terms, that decisions taken at time t
only depend on past uncertainties

Wy~ by~ Wy~ by~ Wy~ by~ wy ~» by
~s W~ by~ Wg ~ bg ~» Wy~ by~ wg ~ by

wpw(v,r)

e The purchase decision b, is taken knowing past prices
o(b,) C U(Wy ,wy) & by=d({wtu<), VEET

e Consumption and settings are decided
after the product prices are revealed

o(v,r) Co(wy, -, wgp) < (v,r) = o({WiteT, p)
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We turn to stochastic optimal control

e We propose a state d with a dynamic
e We formulate a stochastic optimal control problem

e We then propose 5 policies:
Expert, MPC, SDPcs, , SDPcyur, Succ-SDP

dtﬂl/'t Stat bt
ate
_>

policy in t
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We introduce a buffer for the month M;

e We propose the state variable (buffer)

d=) b, RS, te TU{t"}
t'<t

with dynamics d,. =d, + b, VteT
e Backward recursive propagation of the target constraint

D =D
t

Di={d, €D |3IbeB,, dg+b. €D}, VteT
e We reduce the size of the decision set
B(d)={beB, |d+beDi}CB,, VteT
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Reformulation as a stochastic optimal control problem

min E th : wt+\ll(d{+,v,r,p)]

{bf/%trg teT

st do € D+ target constraint
doecD:, VteT state variable
dy=d.+b., VteT state dynamic
b, c B,(d,), VteT
veV, relR
o(b,) Co(wy,---,w,), VteT
o(v,r) Co(wg, - ,wgp)
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Outline of the presentation

1. Part I: Monthly crude oil procurement problem

1.2 Resolution methods
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Single scenario based methods

Expert’'s method (static deterministic)

e crude prices w, are observed

a forecast p of the products prices is given

all 19 crudes are tested individually with w; and p

if the best one is available, purchase it

Model Predictive Control (deterministic dynamic)

e crude prices w; are observed

e a forecast p of the products prices is given

e a forecast (w,.,...,w;) of crude prices is given
e solve the deterministic problem over the interval [t, t]
o take the first optimal decision bf
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Stochastic dynamic programming (value functions)

Before the first week

e we build

e 600 crude prices scenarios { (W, .. .. W) Fsel1,600]
e 10 product prices {p”} ,.c1.10]

e we recursively compute value functions

Vo(d)==3" min W(d,v", r™ "), Vd € Ds

\/t(d)ziz nlind)(bts- W (d+b5)), VdeD,, VteT

Using the sets {D; };~1 and { « fteT reduces computation
by a factor > 10 compared to using D and {B, }teT
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Using a risk measure

We can use a risk measure other than E in the value functions
VECVQRH (d) = CVaR,; [T'rn V(d,v, r,i))} , vd € D+

VEVaRe (d) = CVaRawt{ min (bt W+ VER(d + bt))} , Vd €Dy, VteT
b.eBy(d)
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Stochastic dynamic programming (optimal policy)

e Each week t, we solve a static optimization problem
after the observation of the crude prices w,

min by wy + V. (d; + by)
bteBt(dt)

e The solution to this problem is the control
given by the SDP-policy
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Successive SDP (Succ-SDP)

Each week, we have time to compute new value functions

e crude prices w; are observed
e build N crude prices scenarios {(VW; ..., W) }ecpi
e a forecast p of the products prices is given

e recursively compute new value functions every week

\/{,(d) = n‘j"irn\ll(d, v,r,p), Vd € Dyt

1N
Vo(d) == min S ws+ Vo, (d + b5 >7Vd€®/7Vt'6 tht
(d) N;(bfre%t/(d)(t Vot B) R

e the decision b} is a solution of

min by x w + V. (d + by)
bteBt(dt)
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Outline of the presentation

1. Part I: Monthly crude oil procurement problem

1.3 Numerical results

25 /58



Policy assessment in an industrial setting

e Monte-Carlo simulations (1000 scenarios)

e Succ-SDP is too heavy to be tested this way
e assessment of 4/5 policies

e comparison of histograms of margins

e Historical scenarios

e replay the past for all 5 policies

e comparison of margins and decisions
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Net margins assessed over 1000 scenarios (Monte-Carlo)

Histograms of margins (higher to the right = better)
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s are compared on historical scenarios

e We replay the scenario of December 2020

(W(O,1)7 W(0,2)s M(0,3)» (0,4) W(N,1)» W(N,2)s W(Iv,3) W(N,4) PD)

e We test each policy on this historical scenario

Expert | MPC | SDPes, | SDPcyag,, | Succ-SDP
margin (x107$) | 5.1 6.4 6.4 7.5
gap —— 25% 25% 46%
crude 1 H2 H4 L2 L2 H5
crude 2 L2 L2 H1 H1 L2
crude 3 B5 B1 B1 B1 B1
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Policies are compared on historical scenarios

e We replay every month from October 2020 to February 2021

e We compare the cumulated performances over 5 months

Expert | MPC | SDP.s, | SDPcvar,, | Succ-SDP

margin (x107$) | 5.4 10.1 10.1 27.2
gap — 88% 88% 402%

e Only MPC and Succ-SDP yield positive margins for all months
e Only Succ-SDP outperforms Expert every month

e Succ-SDP slightly edges out MPC;
they are the best performing policies
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Conclusion of Part |

e Model for crude oil procurement under uncertainty in which

e we purchase crude oil every week
e we pilot the refinery every month

Multistage stochastic optimization problem

for a single delivery month
e We have compared 5 resolution methods

e MPC and Succ-SDP are the best performing policies
and they use the price forecast p

There are substantial potential gains in designing policies
based on multistage (stochastic) optimization
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Outline of the presentation

2. Part Il: Time-blocks decomposition
and the multi-months procurement problem

2.1 The multi-months procurement problem
2.2 Time-blocks decomposition
2.3 Two time scales optimization problem

2.4 Back to the procurement problem
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Outline of the presentation

2. Part Il: Time-blocks decomposition
and the multi-months procurement problem

2.1 The multi-months procurement problem
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crude oil shipments purchased every week

refinery stock consumption every month
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New elements for multi-months procurement

e Qil can only be purchased up to 2 months in advance

(m, w)PBm’ (m,w) is a purchase week for the month m’
BMs ={(My,1),(My,2),--- . (M2, 4)}
BM, ={(M2,1),(M2,2),- -, (Ms, 4)}

e Purchases (and buffers) target a specific month

b?;;_w) oil purchased in (m,w) for a delivery in m" > m
d(?n/.w) state of the m’—buffer in (m, w)

e The refinery is operated on a monthly basis

V., crude oil consumption for the month m

r.,  refinery settings for the month m

e Stocks follow a monthly dynamic

s, oil in stocks at the beginning of the month m

m

S+ = ‘fm(sm' (m,w)> Vm)
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We formulate a corresponding optimization problem

min

,
B ) (),

WmiFm

s.t

JER

El Y D Qi (D) Bl Wi, w))> + D V(S @) Voo P Prn)
(mw)EMXW N m/e(m,w) R meM
bimw) € 'B(m w) vm' e M, ¥(m,w) € BPm’ constraints on decisions
v, €V, me M
rn € R, meM
diw ED™, VmeM constraints on stocks
SnES,, VmeM
mingm =0, Vm &M B dynamics on the stocks
dm W= = Tl (@i Blmy) -+ Y((m.w),m') € B
s+ = Fm(sm. din, ‘.vm). Ym e M

m

(b(m w)) C O{Prr b7 <ims {W(m,, w”)}(m” w’)<(mw))  nonanticipativity constraints

\ \
(Vs Fm) T({P it <ms wW m w) S (M w') \777\]
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Checkpoint

Can we leverage the month/week repetitive structure 7

that is, decompose the problem by monthly blocks to

e solve the problem by dynamic programming (DP)
at the monthly scale

e without having to do DP at the weekly scale
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Outline of the presentation

2. Part Il: Time-blocks decomposition
and the multi-months procurement problem

2.2 Time-blocks decomposition
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Dynamic programming equations on subset of instants

We consider a subset of N instants in [0, T]

O=to<ti1 <---<ty=T

te[0,T]

We will build
e reduced Bellman operators {%t/+1;t[},-e[[07/\/_1]]
e reduced value functions {\Z;}ie[[O,N]]
Viw =7
Vi = Bt Ve, 5 Vi€ [0,N—1]
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We introduce histories . ..

e (Up,Up),. .., (Ur—1,Ut_1) are measurable control spaces

o (Wo, Wo),..., (Wy, W) are measurable noise spaces
We define histories for the full timespan
Ho = Wo

t
He = Wo x [[(Us-1 x Ws), Ve [1,T]
s=1

h: € H; contains all the past information
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. with which we can define an elementary Bellman operator

We define the elementary Bellman operator Byy1.+ by

('Bt+1:t<,0)(ht) = inf / @(he, ue, Wit 1) prar1(dwirs | be)
u €U WH—I N————

=htt1

where pi11 is the stochastic kernel at time t (noise distribution)
prit1  He — A(Weypq)

Bl :0 Bn:l Bt1+1:t1 Bt2:t271 BtN:twfl
l»f\/\lf\f\f\f\{’"“\f\
| | | |
——f——————

to t to tver T=ty
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. with which we can define an elementary Bellman operator

We define the elementary Bellman operator Byy1.: by

(Bt+1:t80)(ht) = inf / ©(he, tg, Wert)prer1(dwisr | be)
ur €Ut Wy  —~——

=hei1

where pi.111 is the stochastic kernel at time t (noise distribution)
pre+1 s He — A(Weya)

Btlzt" Btgitl

Where 'Btzitl = Bt1+1:t1 o Bt1+2:t1+1 ©---0 Btg:tgfl
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Assuming a state reduction . ..

14

HL, — L H,,,

i

X Hti+1?ti+1

Ok,

i

Id 9ti+1
Xy, x Hti+1lti+1 E— Xti+1

We assume

o {(Xy;, Xt;)}ieo,n), measurable state sets
® {0 }ic[o,n), Measurable state mappings
e {fi.iy1}icfo,n—1], measurable dynamics

such that

Htpl ((ht/ ’ ht/’*]-:ti—l )) - ft/':tf—l (Htf(ht/)" ht/'vlitfq)
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. that is compatible with kernels ...

X, x He, 112

There exists a family {ps—1:s st +1,t/.1]

of reduced stochastic kernels such that
Pritiy - Hy — A(Wti+1)
ht,) = Pty (dwig1 | Oy (he,))

Pricti (AW 1

ﬁt—l:t : Ht,- X Ht;—i—l:t—l — A(Wt)

/)t—1:t<th ‘ ht,' ht,—l:t) = /\)i—lzt( dwy ‘ Ht,(ht,)' ht,flztfl)
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... then we can write a reduced Bellman operator

Beoyx,
]L(i (He;, o Heiyn) — H‘i (H,, He,)

0x

tit1

*
07

Bti+1?ti

]L(i (th+1 ’ xtz‘+1 ) ]L(J)r (th ’ xti)

Consequently, there exists the family {%tm:t;}ueﬂl,N—l}]
of reduced Bellman operators such that

étﬂrl:ti : L?&- (th+17 xti+1) — ]L’(-)i- (th xti)

(L}\%ti 1:t/73t/'\1) © ()t/ - LRti 1:t/(¢t/' 1 © ()t/' 1)
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We can now write a Bellman operator across (t;,t;.1)

(%tm:t, @tm)(xt;) = inf / Prit+1(dwe 1 | x;)
W, 41

ug; €U¢;

inf / Pririr2( dwe 12 | X, U, Wy 41)
ug;+1€U; 11 W, 42

|an} / /)tf+1*11tf+1( dw,., [ X ey, Wet1, - - Uiy —25 Wtf+1*1)
Ui —1€ U -1,

Pti (ft,:t,;l(Xc,-ﬁ Utpy W15 - - -5 Ut -1, Wc,-H))

Btl to Btz:tl Bt\ o
Xy ———— Xy S X, \XM/,\ \xt\
v — Ty Y \
A A A A A
Bt! to Btg:t\ 0 Bt\ ty_1
ta




Checkpoint

e Computing reduced Bellman operators
does not produce computational gains
e In practice we can now

e decompose the problem block-by-block
e compute approximate value functions
in the subset of instants

e We will now apply time-blocks decomposition
to a two time scales problem
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Outline of the presentation

2. Part Il: Time-blocks decomposition
and the multi-months procurement problem

2.3 Two time scales optimization problem
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We now consider two time scales

e A slow scale (e.g months)

mnS=s<---<s <s<s" <...<5=max$S
where s is the predecessor to s

s is the successor to s

o A fast scale (e.g weeks)

mnF=f<.-..<f <f<ft<...<f=maxF
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Two time scales setting

e Slow

o {U }se§\{§}' slow scale decision measurable sets
o {W} (s, slow scale uncertainty measurable sets
e Fast

o {17 }(sf)ESx(F\{f})
o {WS’&f }(S f

FESX(F\{f})’
e States

fast scale decision measurable sets

fast scale uncertainty measurable sets

o {X¢} s, slow time scale state sets
<> with the dynamic 77 X

> A
(st.f)
° {XSf } __, fast time scale state sets
()7 (s,))esx (F\{f})

— with the dynamic ’in_ )2 ’?f fy X1 ‘?Z f>x"f?;) — Z?i f

YS S WS
XEx U X WS,
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roduce criterion and kernels

We consider the criterion

slow scale variables fast scale variables in [s7, 5[

/—"ﬁ
f f
(hs) = DA (5t Uy i Wb ) 106)
s€S final cost

cost for the period [s7,s[

We consider 2 types of stochastic kernels
that ensure block-wise independence:

e Constant slow scale kernels

pz:s+ S A( §+)

e Fast scale stochastic kernels

WS x H W ey — A(WE )+

f‘
Plafy(s)* (s,

f+
ﬁ,—/
interval [s—,s[ 49 /58



We represent both time scales on a unified timeline

(%]

) —— () &) —— ) & ) = G ) - BS)
{s}xF {st}xF {s}xF
o SxF
SxF

where we denote the successor of (s, f) by

(s, ) iffF£F

s, f)T =
(=) (st.f) iff=F
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We represent both time scales on a unified timeline

X3 if f =
X(sf) = o , V( ,f) € SxF
Xy iffAT
Uen=1% T enesruen)
(s,f) = 5 VIS, T) €9X S,
Uy iff#F
W if f =
W(Sf): 5 V(S,f)ESXF
’ st iff A
(s.f)
W(g 0 )
Fs iff=" L
?(s,f) = V(S,f) € SxF \ {(S,f)}
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We can write a dynamic programming equation

at the slow time scale

We perform a time-block decomposition

on the subset of instants {(S,F)} - C SxF
seSU{s

Vo) = inf [ g (duz)
st

u,€Us

it [ e w2

u(s*i)etuii+ ) (st.,f+)
ut I»r:—]I][cJSf /st pz;f)f(ﬁf (dw 5+f v S+ £ (S;f ))
(sHF) (shE) (s+.f)
(/\S(xs, Ug, W, ., u?;f y (5; f))
+ Vo (Toor O, ug, wis s - z;f y W(sz+j))))
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Outline of the presentation

2. Part Il: Time-blocks decomposition
and the multi-months procurement problem

2.4 Back to the procurement problem
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We recall the multi-months procurement problem

min E

> ( D Uy @iy By W(mw))> + 5 V(S Ay Vios Fros Prm)

,
B ) (m )y e (mwW)EMXW > m’/e(mw)p meM

{Vm:Fm}me

s.t b(m w) € 'B(m w) vm' e M, V(m,w) € Pm’ constraints on decisions
v, €V, me M
rn € R, meM
d‘('r'“_ﬂ) edD™, VmeM constraints on stocks
SnES,, VmeM

mingm =0, Vm &M dynamics on the stocks

dm W= = Ty (@l D))+ V(mow),m') € B
St = Tm(Smr dlmwy V) » Ym EM

(b(m w)) C O{Prr b7 <ims {W(m,, w”)}(m” w’)<(mw))  nonanticipativity constraints

\ \
(Vs Fm) T({P it <ms wW m w) S (M w') \777\]
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Translation of the two time scales to the procurement

Notations Crude oil procurement
S set of months during which we manage the refinery;
F set of weeks in each month;
(84 set of crude oil consumptions during the month s*
Wz, set of product prices for the month s+

U?;f) set of crude shipments purchased in week (s, f)

W?Z o+ set of crude oil prices in week (s,f)

Sf;f) dynamic accumulation of shipments purchased in (s, f)
I3 dynamics of the stocks inside the refinery between s and s™
Ay operational costs during the month s

(crude oil purchases during s - earnings from production)
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The general procurement problem

fits a two time scales problem

infE[Z/\S(XSS,, Ws, {XZ 5, U p): {s,fy}feF\{f})‘F/\g(Xg)}

s€S
sit. ULy e Uy, V(s,f) € SXF

U:eUs, VseS

X:eX:, VseS
X eXigy s V(s,f) € SXF

sf _
Xiey = Tien X U e W)
X3 = F(XS, Ug, WS ), Vs e S\{s}

s sf
(U(s f)) c U({V‘/S’}s’<s’ {W(S/,f/)}(slﬁf/)_<(s7f))
U(USS) - U({WSS}S/-<S7 {W(Sst,f/)}(sl7f/)_<(s7f)) 56/58



Conclusion and outlooks

on the multi-months procurement problem

e Given a value function V; and a state x¢_,
computing V__(xS_) ~ solving a monthly problem
e Two time scales decomposition assumes
month-wise independence of the noises
— crude oil prices inside a month are time-dependent

e \arious methods can be used to solve the problem
inside each month
< adapt policies from Part | to approximate value functions
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e We built a model for the crude oil procurement
that models uncertainties and delivery delays

e Multi-scenarios-based policies showed promising results

on the monthly procurement problem

e We developed a framework
to decompose two time scales problems at the slow scale,

without independent fast scale noises

e Next: Adapt the policies from Part |
to the multi-months problem
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