Stochastic dynamic optimization for crude oil procurement of refineries

PhD defense, December 2nd, 2021

Thomas MARTIN MSTIC, CERMICS, École des Ponts ParisTech

École des Ponts ParisTech

Crude oil procurement overview

How do we optimally manage the crude purchases while taking into account delivery times and uncertainties?

Comparing policies under uncertainty: average and spread

Histograms of the operating margins for two policies (higher is better)

1. Part I: Monthly crude oil procurement problem

2. Part II: Time-blocks decomposition and the multi-months procurement problem

Outline of the presentation

- 1. Part I: Monthly crude oil procurement problem
- 1.1 Modeling of the crude oil procurement and formulation of an optimal control problem
- 1.2 Resolution methods
- 1.3 Numerical results
- 2. Part II: Time-blocks decomposition and the multi-months procurement problem
- 2.1 The multi-months procurement problem
- 2.2 Time-blocks decomposition
- 2.3 Two time scales optimization problem
- 2.4 Back to the procurement problem

Outline of the presentation

- 1. Part I: Monthly crude oil procurement problem
- 1.1 Modeling of the crude oil procurement and formulation of an optimal control problem
- 1.2 Resolution methods
- 1.3 Numerical results
- 2. Part II: Time-blocks decomposition and the multi-months procurement problem
- 2.1 The multi-months procurement problem
- 2.2 Time-blocks decomposition
- 2.3 Two time scales optimization problem
- 2.4 Back to the procurement problem

Purchase and delivery timeline

- One single delivery/consumption month M_3
- Crude purchases over the two months M₁ and M₂ preceding M₃

Purchase and delivery timeline

For ease of use we denote the timespan of the problem

T = (1, 2, 3, 4, 5, 6, 7, 8)with $\underline{t} = 1 = (M_1, 1)$ $\overline{t} = 8 = (M_2, 4)$

 $t^+ =$ the successor of t $ar{t}^+ = 9 = (M_3, 1)$

We identify decision variables

Each week, a set of crudes is available for purchase

We identify 3 types of decision

- Cargos $\{b_t\}_{t \in T}$ represent the quantities of crude purchased
- Volumes v represent the crude oil consumed
- Settings r of the refinery are applied during the month M_3

We identify decision variables

Each week, a set of crudes is available for purchase

<u> </u>	*			*		*	*	6.	
M_1				M_2				M_3	
1	2	3	4	1	2	3	4	1	
	— H4		— H2	— НЗ			H6		
B5	B1	B4 B3		B2					
L2	L8		L6 L5	L7	L1	L3	L4		
b_1	b_2	b_3	b_4	b_5	b_6	b_7	b_8	v,r	

Crude oil is available in fixed quantities (full tanker)

$$\begin{array}{ll} b_1 = (0, \dots, 0, b_1^{B5}, 0, \dots, 0, b_1^{L2}, 0, \dots, 0) \in \mathcal{B}_1 \subset \mathbb{R}^{19}_+ \\ b_1^{B5} &= 0 \text{ or } 1.5 \text{ million barrels} \\ b_1^{L2} &= 0 \text{ or } 2.3 \text{ million barrels} \end{array} \xrightarrow{} |\mathcal{B}_1| = 4$$

We identify sources of uncertainty

We model two sources of uncertainty

- Prices $\{w_t\}_{t \in T}$ of all crudes at the beginning of each week t
- Price p of all products at the beginning of the month M_3

We have

- specified a time structure
- identified decision variables
- identified sources of uncertainty

We will

- explicit a coupling constraint on crude purchases
- propose an economic function
- write multistage stochastic optimization problems

Not all crudes can be processed together

- Due to the limited treatment capacity of the refinery
- Due to chemical properties making crudes incompatible

- Purchase exactly 3 shipments
- No more than one cargo of heavy crude
- No more than one cargo of light crude
- No constraint on balanced crude

The compatible crude combinations are described by a set $\ensuremath{\mathfrak{D}}$

$$\overbrace{\sum_{\mathsf{t}\in\mathsf{T}}\boldsymbol{b}_\mathsf{t}\in\mathcal{D}}^{\mathsf{combinations}}\subset\mathbb{R}^{19}_+\qquad|\mathcal{D}|=520$$

where, for example

$$\sum_{t \in T} \boldsymbol{b}_{t} = (\underbrace{1.5}_{H4}, 0, \dots, 0, \underbrace{1.4}_{B3}, 0, \dots, 0, \underbrace{2}_{L3}) \times 10^{6} \text{ barrels}$$

$$\begin{split} & \underset{\substack{\{\boldsymbol{b}_t\}_{t\in T}}{\min} \mathbb{E} \Big[\sum_{t\in T} \boldsymbol{b}_t \cdot \boldsymbol{w}_t + \Psi(\sum_{t\in T} \boldsymbol{b}_t, \boldsymbol{v}, \boldsymbol{r}, \boldsymbol{p}) \Big] \\ & s.t \quad \sum_{t\in T} \boldsymbol{b}_t \in \mathcal{D} \qquad \text{coupling constraint} \\ & \boldsymbol{b}_t \in \mathcal{B}_t , \ \forall t \in T \qquad \text{cargos availability} \\ & \boldsymbol{v} \in \mathcal{V} , \ \boldsymbol{r} \in \mathcal{R} \qquad \text{management of the refinery} \\ & \sigma(\boldsymbol{b}_t) \subset \sigma(\boldsymbol{w}_{\underline{t}}, \cdots, \boldsymbol{w}_t) , \ \forall t \in T \\ & \underbrace{\sigma(\boldsymbol{v}, \boldsymbol{r})}_{\sigma-\text{algebra}} \subset \sigma(\boldsymbol{w}_{\underline{t}}, \cdots, \boldsymbol{w}_{\overline{t}}, \boldsymbol{p}) \end{split}$$

Nonanticipativity constraints

The last two constraints are nonanticipativity constraints: they represent, in mathematical terms, that decisions taken at time t only depend on past uncertainties

$$w_1 \rightsquigarrow b_1 \rightsquigarrow w_2 \rightsquigarrow b_2 \rightsquigarrow w_3 \rightsquigarrow b_3 \rightsquigarrow w_4 \rightsquigarrow b_4$$
$$\rightsquigarrow w_5 \rightsquigarrow b_5 \rightsquigarrow w_6 \rightsquigarrow b_6 \rightsquigarrow w_7 \rightsquigarrow b_7 \rightsquigarrow w_8 \rightsquigarrow b_8$$
$$\rightsquigarrow p \rightsquigarrow (v, r)$$

• The purchase decision b_t is taken knowing past prices

 $\sigma(\boldsymbol{b}_t) \subset \sigma(\boldsymbol{w}_{\underline{t}}, \cdots, \boldsymbol{w}_t) \quad \Leftrightarrow \quad \boldsymbol{b}_t = \phi_t(\{\boldsymbol{w}_{t'}\}_{t' \leq t}) \ , \ \forall t \in \mathsf{T}$

• Consumption and settings are decided after the product prices are revealed

$$\sigma(\mathbf{v}, \mathbf{r}) \subset \sigma(\mathbf{w}_{\underline{t}}, \cdots, \mathbf{w}_{\overline{t}}, \mathbf{p}) \quad \Leftrightarrow \quad (\mathbf{v}, \mathbf{r}) = \phi(\{\mathbf{w}_{\underline{t}}\}_{\underline{t} \in \mathsf{T}}, \mathbf{p})$$

- We propose a state *d* with a dynamic
- We formulate a stochastic optimal control problem
- We then propose 5 policies: Expert, MPC, SDP_{esp}, SDP_{CVaR}, Succ-SDP

• We propose the state variable (buffer)

$$d_{t} = \sum_{t' < t} b_{t'} \in \mathbb{R}^{\mathsf{C}} , \ \forall t \in \mathsf{T} \cup \{\overline{t}^{+}\}$$

with dynamics $\textit{d}_{t^+} = \textit{d}_t + \textit{b}_t$, $\forall t \in T$

Backward recursive propagation of the target constraint

$$\begin{split} \mathcal{D}_{\overline{t}^+} &= \mathcal{D} \\ \mathcal{D}_{t} &= \{ d_t \in \mathcal{D} \mid \exists b_t \in \mathcal{B}_t \ , \ d_t + b_t \in \mathcal{D}_{t^+} \} \ , \ \forall t \in \mathsf{T} \end{split}$$

• We reduce the size of the decision set

 $\widetilde{\mathbb{B}}_{\mathsf{t}}(d) = \{ b \in \mathbb{B}_{\mathsf{t}} \mid d_{\mathsf{t}} + b \in \mathbb{D}_{\mathsf{t}^+} \} \subset \mathbb{B}_{\mathsf{t}} \ , \ \forall \mathsf{t} \in \mathsf{T}$

{

$$\begin{split} \min_{\substack{\boldsymbol{b}_t\}_{t\in\mathsf{T}}\\ \boldsymbol{v},\boldsymbol{r}}} \mathbb{E}\Big[\sum_{t\in\mathsf{T}} \boldsymbol{b}_t \cdot \boldsymbol{w}_t + \Psi(\boldsymbol{d}_{\overline{t}^+}, \boldsymbol{v}, \boldsymbol{r}, \boldsymbol{p})\Big] \\ s.t \quad \boldsymbol{d}_{\overline{t}^+} \in \mathcal{D}_{\overline{t}^+} & \text{target constraint} \\ \boldsymbol{d}_t \in \mathcal{D}_t , \quad \forall t\in\mathsf{T} & \text{state variable} \\ \boldsymbol{d}_{t^+} = \boldsymbol{d}_t + \boldsymbol{b}_t , \quad \forall t\in\mathsf{T} & \text{state dynamic} \\ \boldsymbol{b}_t \in \widetilde{\mathcal{B}}_t(\boldsymbol{d}_t) , \quad \forall t\in\mathsf{T} & \text{state dynamic} \\ \boldsymbol{b}_t \in \widetilde{\mathcal{B}}_t(\boldsymbol{d}_t) , \quad \forall t\in\mathsf{T} & \boldsymbol{v}\in\mathcal{V} , \quad \boldsymbol{r}\in\mathcal{R} \\ \sigma(\boldsymbol{b}_t) \subset \sigma(\boldsymbol{w}_{\underline{t}}, \cdots, \boldsymbol{w}_t) , \quad \forall t\in\mathsf{T} & \\ \sigma(\boldsymbol{v}, \boldsymbol{r}) \subset \sigma(\boldsymbol{w}_t, \cdots, \boldsymbol{w}_{\overline{t}}, \boldsymbol{p}) \end{split}$$

Outline of the presentation

1. Part I: Monthly crude oil procurement problem

- 1.1 Modeling of the crude oil procurement and formulation of an optimal control problem
- 1.2 Resolution methods
- 1.3 Numerical results
- 2. Part II: Time-blocks decomposition and the multi-months procurement problem
- 2.1 The multi-months procurement problem
- 2.2 Time-blocks decomposition
- 2.3 Two time scales optimization problem
- 2.4 Back to the procurement problem

Expert's method (static deterministic)

- crude prices w_t are observed
- a forecast $\widetilde{\rho}$ of the products prices is given
- all 19 crudes are tested individually with $w_{\rm t}$ and \widetilde{p}
- if the best one is available, purchase it

Model Predictive Control (deterministic dynamic)

- crude prices w_t are observed
- a forecast \tilde{p} of the products prices is given
- a forecast $(\widetilde{w}_{t^+}, \dots, \widetilde{w}_{\overline{t}})$ of crude prices is given
- solve the deterministic problem over the interval $[\![t,\bar{t}]\!]$
- take the first optimal decision b_t^*

Stochastic dynamic programming (value functions)

Before the first week

- we build
 - 600 crude prices scenarios $\{(\hat{w}_t^s, \dots, \hat{w}_{\bar{t}}^s)\}_{s \in [1,600]}$
 - 10 product prices $\{\hat{p}^m\}_{m \in [1,10]}$
- we recursively compute value functions

$$\begin{split} & \boldsymbol{V}_{\overline{t}^+}(d) = \frac{1}{10} \sum_{m=1}^{10} \min_{\boldsymbol{v}^m, \boldsymbol{r}^m} \Psi(d, \boldsymbol{v}^m, \boldsymbol{r}^m, \hat{\boldsymbol{\rho}}^m) \;, \; \forall d \in \mathcal{D}_{\overline{t}^+} \\ & \boldsymbol{V}_{t}(d) = \frac{1}{600} \sum_{s=1}^{600} \min_{\boldsymbol{b}_t^s \in \widetilde{\mathcal{B}}_{t}(d)} \left(\boldsymbol{b}_t^s \cdot \hat{\boldsymbol{w}}_t^s + \boldsymbol{V}_{t^+}(d+\boldsymbol{b}_t^s) \right) \;, \; \forall d \in \mathcal{D}_{t} \;, \; \forall t \in \mathsf{T} \end{split}$$

Using the sets $\{\mathcal{D}_t\}_{t\in T}$ and $\{\widetilde{\mathcal{B}}_t\}_{t\in T}$ reduces computation by a factor > 10 compared to using \mathcal{D} and $\{\mathcal{B}_t\}_{t\in T}$ We can use a risk measure other than $\ensuremath{\mathbb{E}}$ in the value functions

$$\begin{split} & V_{\overline{t}^+}^{CVaR_{\alpha}}(d) = CVaR_{\alpha\hat{p}} \bigg[\min_{\boldsymbol{v},\boldsymbol{r}} \Psi(d,\boldsymbol{v},\boldsymbol{r},\hat{p}) \bigg] , \ \forall d \in \mathcal{D}_{\overline{t}^+} \\ & V_t^{CVaR_{\alpha}}(d) = CVaR_{\alpha\hat{\boldsymbol{w}}_t} \bigg[\min_{\boldsymbol{b}_t \in \widetilde{\mathfrak{B}}_t(d)} \left(\boldsymbol{b}_t \cdot \hat{\boldsymbol{w}}_t + V_{t^+}^{CVaR_{\alpha}}(d + \boldsymbol{b}_t) \right) \bigg] , \ \forall d \in \mathcal{D}_t , \ \forall t \in \mathsf{T} \end{split}$$

• Each week t, we solve a static optimization problem after the observation of the crude prices *w*_t

$$\min_{\substack{b_{\mathsf{t}}\in\widetilde{\mathcal{B}}_{\mathsf{t}}(d_{\mathsf{t}})}} b_{\mathsf{t}} \cdot w_{\mathsf{t}} + V_{\mathsf{t}^+}(d_{\mathsf{t}} + b_{\mathsf{t}})$$

• The solution to this problem is the control given by the SDP-policy

Successive SDP (Succ-SDP)

Each week, we have time to compute new value functions

- crude prices w_t are observed
- build N crude prices scenarios $\{(\hat{w}_{t^+}^s \dots, \hat{w}_{\bar{t}}^s)\}_{s \in [1,N]}$
- a forecast \tilde{p} of the products prices is given
- recursively compute new value functions every week

$$\begin{split} \hat{V}_{\overline{t}^+}(d) &= \min_{\mathbf{v},\mathbf{r}} \Psi(d,\mathbf{v},\mathbf{r},\widetilde{\rho}) \;, \; \forall d \in \mathcal{D}_{\overline{t}^+} \\ \hat{V}_{t'}(d) &= \frac{1}{N} \sum_{s=1}^N \left(\min_{\substack{b_{t'}^s \in \widetilde{\mathbb{B}}_{t'}(d)}} \left(b_{t'}^s \cdot \hat{w}_{t'}^s + \hat{V}_{t'+1}(d+b_{t'}^s) \right) \right) \;, \; \forall d \in \mathcal{D}_{t'} \;, \; \forall t' \in \llbracket t^+, \overline{t} \rrbracket \end{split}$$

the decision b^{*}_t is a solution of

$$\min_{\substack{b_{\mathsf{t}}\in\widetilde{\mathcal{B}}_{\mathsf{t}}(d_{\mathsf{t}})}} b_{\mathsf{t}} \times w_{\mathsf{t}} + \hat{V}_{\mathsf{t}^+}(d_{\mathsf{t}} + b_{\mathsf{t}})$$

Outline of the presentation

1. Part I: Monthly crude oil procurement problem

- 1.1 Modeling of the crude oil procurement and formulation of an optimal control problem
- 1.2 Resolution methods
- 1.3 Numerical results
- 2. Part II: Time-blocks decomposition and the multi-months procurement problem
- 2.1 The multi-months procurement problem
- 2.2 Time-blocks decomposition
- 2.3 Two time scales optimization problem
- 2.4 Back to the procurement problem

- Monte-Carlo simulations (1000 scenarios)
 - Succ-SDP is too heavy to be tested this way
 - assessment of 4/5 policies
 - comparison of histograms of margins

- Historical scenarios
 - replay the past for all 5 policies
 - comparison of margins and decisions

Net margins assessed over 1000 scenarios (Monte-Carlo)

Policies are compared on historical scenarios

• We replay the scenario of December 2020

 $(w_{(O,1)}, w_{(O,2)}, w_{(O,3)}, w_{(O,4)}, w_{(N,1)}, w_{(N,2)}, w_{(N,3)}, w_{(N,4)}, p_D)$

• We test each policy on this historical scenario

	Expert	MPC	SDP_{esp}	SDP _{CVaR5%}	Succ-SDP
margin ($\times 10^7$ \$)	5.1	7.5	6.4	6.4	7.5
gap		46%	25%	25%	46%
crude 1	H2	H4	L2	L2	H5
crude 2	L2	L2	H1	H1	L2
crude 3	B5	B1	B1	B1	B1

Policies are compared on historical scenarios

- We replay every month from October 2020 to February 2021
- We compare the cumulated performances over 5 months

	Expert	MPC	SDP _{esp}	SDP _{CVaR_{5%}}	Succ-SDP
margin ($\times 10^7$ \$)	5.4	26.7	10.1	10.1	27.2
gap		394%	88%	88%	402%

- Only MPC and Succ-SDP yield positive margins for all months
- Only Succ-SDP outperforms Expert every month
- Succ-SDP slightly edges out MPC; they are the best performing policies

Conclusion of Part I

- Model for crude oil procurement under uncertainty in which
 - we purchase crude oil every week
 - we pilot the refinery every month
- Multistage stochastic optimization problem for a single delivery month
- We have compared 5 resolution methods
- MPC and Succ-SDP are the best performing policies and they use the price forecast p

There are substantial potential gains in designing policies based on multistage (stochastic) optimization

- 1. Part I: Monthly crude oil procurement problem
- 1.1 Modeling of the crude oil procurement and formulation of an optimal control problem
- 1.2 Resolution methods
- 1.3 Numerical results
- 2. Part II: Time-blocks decomposition and the multi-months procurement problem
- 2.1 The multi-months procurement problem
- 2.2 Time-blocks decomposition
- 2.3 Two time scales optimization problem
- 2.4 Back to the procurement problem

- 1. Part I: Monthly crude oil procurement problem
- 1.1 Modeling of the crude oil procurement and formulation of an optimal control problem
- 1.2 Resolution methods
- 1.3 Numerical results
- 2. Part II: Time-blocks decomposition and the multi-months procurement problem
- 2.1 The multi-months procurement problem
- 2.2 Time-blocks decomposition
- 2.3 Two time scales optimization problem
- 2.4 Back to the procurement problem

We manage the refinery for any number of months

refinery stock consumption every month

New elements for multi-months procurement

- Oil can only be purchased up to 2 months in advance $(m,w)\mathfrak{P}m'$ (m,w) is a purchase week for the month m' $\mathfrak{P}M_3 = \{(M_1,1), (M_1,2), \cdots, (M_2,4)\}$ $\mathfrak{P}M_4 = \{(M_2,1), (M_2,2), \cdots, (M_3,4)\}$
- Purchases (and buffers) target a specific month $b_{(m,w)}^{m'}$ oil purchased in (m,w) for a delivery in m' > m $d_{(m,w)}^{m'}$ state of the m'-buffer in (m,w)
- The refinery is operated on a monthly basis
 v_m crude oil consumption for the month m
 r_m refinery settings for the month m
- Stocks follow a monthly dynamic

 $s_{\rm m}$ oil in stocks at the beginning of the month m

 $\boldsymbol{s}_{\mathrm{m}^{+}} = \mathcal{F}_{\mathrm{m}}(\boldsymbol{s}_{\mathrm{m}}, \boldsymbol{d}_{\mathrm{(m,\underline{w})}}^{\mathrm{m}}, \boldsymbol{v}_{\mathrm{m}})$

$$\begin{split} & \underset{\{\boldsymbol{b}_{(m,w)}^{m'}\}_{((m,w),m')\in\mathfrak{P}}}{\min} \quad \mathbb{E} \left[\sum_{(m,w)\in M\times W} \left(\sum_{m'\in(m,w)\mathfrak{P}} \Omega_{(m,w)}^{m'}(\boldsymbol{d}_{(m,w)}^{m'}, \boldsymbol{b}_{(m,w)}^{m'}, \boldsymbol{w}_{(m,w)}) \right) + \sum_{m\in M} \Psi_{m}(\boldsymbol{s}_{m}, \boldsymbol{d}_{(m,\underline{w})}^{m}, \boldsymbol{v}_{m}, \boldsymbol{r}_{m}, \boldsymbol{p}_{m}) \right] \\ & \text{s.t} \quad \boldsymbol{b}_{(m,w)}^{m'} \in \mathfrak{B}_{(m,w)}^{m'}, \ \forall m' \in M, \ \forall (m,w) \in \mathfrak{P}m' \qquad \text{constraints on decisions} \\ & \boldsymbol{v}_{m} \in \mathcal{P}_{m}, \ \forall m \in M \\ & \boldsymbol{r}_{m} \in \mathfrak{R}_{m}, \ \forall m \in M \\ & \boldsymbol{d}_{(m,\underline{w})}^{m} \in \mathfrak{D}^{m}, \ \forall m \in M \\ & \boldsymbol{d}_{(m,\underline{w})}^{m} \in \mathfrak{S}_{m}, \ \forall m \in M \\ & \boldsymbol{d}_{(m,\underline{w})}^{m} = \boldsymbol{0}, \ \forall m \in M \\ & \boldsymbol{d}_{(m,\underline{w})}^{m} = \boldsymbol{0}, \ \forall m \in M \\ & \boldsymbol{d}_{(m,w)}^{m} = \mathcal{P}_{m'}, \forall m \in M \\ & \boldsymbol{d}_{(m,w)}^{m} = \mathcal{P}_{m',w}^{m'}(\boldsymbol{d}_{(m',w)}^{m'}, \boldsymbol{b}_{(m',w)}^{m'}), \ \forall ((m,w),m') \in \widetilde{\mathfrak{P}} \\ & \boldsymbol{s}_{m+} = \mathcal{F}_{m}(\boldsymbol{s}_{m}, \boldsymbol{d}_{(m,\underline{w})}^{m}, \boldsymbol{v}_{m}), \ \forall m \in M \\ & \boldsymbol{s}_{m+} = \mathcal{F}_{m}(\boldsymbol{s}_{m}, \boldsymbol{d}_{(m,\underline{w})}^{m'}, \boldsymbol{v}_{m}), \ \forall m \in M \\ \end{split}$$

$$\begin{split} \sigma(\boldsymbol{b}_{(m,w)}^{m'}) &\subset \sigma(\{\boldsymbol{p}_{m''}\}_{m''\leq m}, \{\boldsymbol{w}_{(m'',w'')}\}_{(m'',w'')\leq (m,w)}) \quad \text{nonanticipativity constraints} \\ \sigma(\boldsymbol{v}_{m}, \boldsymbol{r}_{m}) &\subset \sigma(\{\boldsymbol{p}_{m''}\}_{m''\leq m}, \{\boldsymbol{w}_{(m'',w'')}\}_{(m'',w'')\leq (m,w)}) \end{split}$$

Can we leverage the month/week repetitive structure ?

that is, decompose the problem by monthly blocks to

- solve the problem by dynamic programming (DP) at the monthly scale
- without having to do DP at the weekly scale

- 1. Part I: Monthly crude oil procurement problem
- 1.1 Modeling of the crude oil procurement and formulation of an optimal control problem
- 1.2 Resolution methods
- 1.3 Numerical results
- 2. Part II: Time-blocks decomposition and the multi-months procurement problem
- 2.1 The multi-months procurement problem
- 2.2 Time-blocks decomposition
- 2.3 Two time scales optimization problem
- 2.4 Back to the procurement problem

Dynamic programming equations on subset of instants

We consider a subset of N instants in $[\![0, T]\!]$

$$0 = t_0 < t_1 < \dots < t_N = T$$

We will build

- reduced Bellman operators $\{\widetilde{\mathcal{B}}_{t_{i+1}:t_i}\}_{i \in [0, N-1]}$
- reduced value functions $\{\widetilde{V}_{t_i}\}_{i \in [0,N]}$

$$\begin{split} \widetilde{V}_{\mathsf{t}_{N}} &= \widetilde{\jmath} \ \widetilde{V}_{\mathsf{t}_{i}} &= \widetilde{\mathcal{B}}_{\mathsf{t}_{i+1}:\mathsf{t}_{i}} \widetilde{V}_{\mathsf{t}_{i+1}} \ , \ \forall i \in \llbracket 0, N-1
brace \end{split}$$

We introduce histories ...

- $(\mathbb{U}_0, \mathcal{U}_0), \ldots,$ $(\mathbb{U}_{T-1}, \mathcal{U}_{T-1})$ are measurable control spaces
- $(\mathbb{W}_0, \mathcal{W}_0), \ldots, (\mathbb{W}_T, \mathcal{W}_T)$ are measurable noise spaces

We define histories for the full timespan

$$\begin{split} \mathbb{H}_0 &= \mathbb{W}_0 \\ \mathbb{H}_t &= \mathbb{W}_0 \times \prod_{s=1}^t (\mathbb{U}_{s-1} \times \mathbb{W}_s) \;, \; \; \forall t \in \llbracket 1, T \rrbracket \end{split}$$

 $h_{\mathrm{t}} \in \mathbb{H}_{\mathrm{t}}$ contains all the past information

We define the elementary Bellman operator $\mathcal{B}_{t+1:t}$ by

$$(\mathcal{B}_{t+1:t}\varphi)(h_t) = \inf_{u_t \in \mathbb{U}_t} \int_{\mathbb{W}_{t+1}} \varphi(\underbrace{h_t, u_t, w_{t+1}}_{=h_{t+1}}) \rho_{t:t+1}(dw_{t+1} \mid h_t)$$

where $\rho_{t:t+1}$ is the stochastic kernel at time t (noise distribution)

$$\rho_{\mathsf{t}:\mathsf{t}+1}: \mathbb{H}_{\mathsf{t}} \longrightarrow \varDelta(\mathbb{W}_{\mathsf{t}+1})$$

... with which we can define an elementary Bellman operator

We define the elementary Bellman operator $\mathcal{B}_{t+1:t}$ by

$$(\mathcal{B}_{t+1:t}\varphi)(h_t) = \inf_{u_t \in \mathbb{U}_t} \int_{\mathbb{W}_{t+1}} \varphi(\underbrace{h_t, u_t, w_{t+1}}_{=h_{t+1}}) \rho_{t:t+1}(dw_{t+1} \mid h_t)$$

where $\rho_{t:t+1}$ is the stochastic kernel at time t (noise distribution)

$$\rho_{\mathsf{t}:\mathsf{t}+1}: \mathbb{H}_{\mathsf{t}} \longrightarrow \varDelta(\mathbb{W}_{\mathsf{t}+1})$$

where $\mathfrak{B}_{t_2:t_1}=\mathfrak{B}_{t_1+1:t_1}\circ\mathfrak{B}_{t_1+2:t_1+1}\circ\cdots\circ\mathfrak{B}_{t_2:t_2-1}$

40 / 58

Assuming a state reduction ...

We assume

- $\{(\mathbb{X}_{t_i}, \mathcal{X}_{t_i})\}_{i \in [0, N]}$, measurable state sets
- $\{\theta_{t_i}\}_{i \in [0,N]}$, measurable state mappings
- ${f_{i:i+1}}_{i \in [0, N-1]}$, measurable dynamics

such that

$$\theta_{t_{i+1}}((h_{t_i}, h_{t_i+1:t_{i+1}})) = f_{t_i:t_{i+1}}(\theta_{t_i}(h_{t_i}), h_{t_i+1:t_{i+1}})$$

... that is compatible with kernels ...

There exists a family $\{\tilde{\rho}_{s-1:s}\}_{s \in [t_i+1, t_{i+1}]}$ of reduced stochastic kernels such that

$$\begin{split} \widetilde{\rho}_{\mathsf{t}_{i}:\mathsf{t}_{i+1}} : \mathbb{H}_{\mathsf{t}_{i}} \to \varDelta(\mathbb{W}_{\mathsf{t}_{i+1}}) \\ \rho_{\mathsf{t}_{i}:\mathsf{t}_{i+1}} \big(\mathsf{d}\mathsf{w}_{\mathsf{t}_{i+1}} \big| \, \mathsf{h}_{\mathsf{t}_{i}} \big) &= \widetilde{\rho}_{\mathsf{t}_{i}:\mathsf{t}_{i+1}} \big(\, \mathsf{d}\mathsf{w}_{\mathsf{t}_{i}+1} \, \big| \, \theta_{\mathsf{t}_{i}}(\mathsf{h}_{\mathsf{t}_{i}}) \big) \end{split}$$

$$\widetilde{\rho}_{t-1:t} : \mathbb{H}_{t_i} \times \mathbb{H}_{t_i+1:t-1} \to \Delta(\mathbb{W}_t)$$

$$\rho_{t-1:t} (dw_t | h_{t_i}, h_{t_i+1:t}) = \widetilde{\rho}_{t-1:t} (dw_t | \theta_{t_i}(h_{t_i}), h_{t_i+1:t-1})$$

$$42/58$$

... then we can write a reduced Bellman operator

$$\begin{array}{c} \mathbb{L}^{0}_{+}(\mathbb{H}_{t_{i+1}},\mathcal{H}_{t_{i+1}}) \xrightarrow{\mathcal{B}_{t_{i+1}:t_{i}}} \mathbb{L}^{0}_{+}(\mathbb{H}_{t_{i}},\mathcal{H}_{t_{i}}) \\ \\ \theta^{\star}_{t_{i+1}} & & & & \\ \theta^{\star}_{t_{i+1}} & & & & \\ \mathbb{L}^{0}_{+}(\mathbb{X}_{t_{i+1}},\mathcal{X}_{t_{i+1}}) \xrightarrow{\widetilde{\mathcal{B}}_{t_{i+1}:t_{i}}} \mathbb{L}^{0}_{+}(\mathbb{X}_{t_{i}},\mathcal{X}_{t_{i}}) \end{array}$$

Consequently, there exists the family $\{\widetilde{\mathbb{B}}_{t_{i+1}:t_i}\}_{i \in [\![1,N-1]\!]}$ of reduced Bellman operators such that

$$\begin{split} \widetilde{\mathbb{B}}_{t_{i+1}:t_i} &: \mathbb{L}^{\mathsf{0}}_+(\mathbb{X}_{t_{i+1}}, \mathcal{X}_{t_{i+1}}) \to \mathbb{L}^{\mathsf{0}}_+(\mathbb{X}_{t_i}, \mathcal{X}_{t_i}) \\ & \left(\widetilde{\mathbb{B}}_{t_{i+1}:t_i}\widetilde{\varphi}_{t_{i+1}}\right) \circ \theta_{t_i} = \mathbb{B}_{t_{i+1}:t_i}(\widetilde{\varphi}_{t_{i+1}} \circ \theta_{t_{i+1}}) \end{split}$$

43 / 58

We can now write a Bellman operator across (t_i, t_{i+1})

- Computing reduced Bellman operators does not produce computational gains
- In practice we can now
 - decompose the problem block-by-block
 - compute approximate value functions in the subset of instants

• We will now apply time-blocks decomposition to a two time scales problem

- 1. Part I: Monthly crude oil procurement problem
- 1.1 Modeling of the crude oil procurement and formulation of an optimal control problem
- 1.2 Resolution methods
- 1.3 Numerical results
- 2. Part II: Time-blocks decomposition and the multi-months procurement problem
- 2.1 The multi-months procurement problem
- 2.2 Time-blocks decomposition
- 2.3 Two time scales optimization problem
- 2.4 Back to the procurement problem

• A slow scale (e.g months)

$$\begin{split} \min S &= \underline{s} \prec \cdots \prec s^{-} \prec s \prec s^{+} \prec \cdots \prec \overline{s} = \max S \\ \text{where} \quad s^{-} \text{ is the predecessor to s} \\ s^{+} \text{ is the successor to s} \end{split}$$

• A fast scale (e.g weeks)

$$\min \mathsf{F} = \underline{\mathsf{f}} \prec \cdots \prec \mathsf{f}^- \prec \mathsf{f} \prec \mathsf{f}^+ \prec \cdots \prec \overline{\mathsf{f}} = \max \mathsf{F}$$

Two time scales setting

• Slow

- $\{\mathbb{U}_s^s\}_{s\in\overline{S}\setminus\{\overline{s}\}},$ slow scale decision measurable sets
- $\{\mathbb{W}_s^s\}_{s\in S}$, slow scale uncertainty measurable sets
- Fast
 - $\{\mathbb{U}_{(s,f)}^{sf}\}_{(s,f)\in S\times(F\setminus\{\bar{f}\})}$, fast scale decision measurable sets
 - $\{\mathbb{W}^{sf}_{(s,f)}\}_{(s,f)\in\mathsf{S}\times(F\setminus\{\underline{f}\})}$, fast scale uncertainty measurable sets
- States
 - $\{\mathbb{X}_{s}^{s}\}_{s\in\overline{S}}$, slow time scale state sets
 - $\hookrightarrow \text{ with the dynamic } \mathcal{F}^{s}_{s}: \mathbb{X}^{s}_{s} \times \mathbb{U}^{s}_{s} \times \mathbb{W}^{s}_{s^{+}} \to \mathbb{X}^{sf}_{(s^{+},f)}$
 - $\left\{\mathbb{X}^{sf}_{(s,f)}\right\}_{(s,f)\in S\times (F\setminus\{\bar{f}\})},$ fast time scale state sets
 - $\hookrightarrow \text{ with the dynamic } \mathfrak{P}^{sf}_{(s,f)}: \mathbb{X}^{sf}_{(s,f)} \times \mathbb{U}^{sf}_{(s,f)} \times \mathbb{W}^{sf}_{(s,f)^+} \to \mathbb{X}^{sf}_{(s,f)^+}$

We introduce criterion and kernels

We consider the criterion

We consider 2 types of stochastic kernels that ensure block-wise independence:

• Constant slow scale kernels

$$\rho^{\mathsf{s}}_{\mathsf{s}:\mathsf{s}^+} \in \Delta(\mathbb{W}^{\mathsf{s}}_{\mathsf{s}^+})$$

• Fast scale stochastic kernels

$$\rho^{\mathsf{sf}}_{(\mathsf{s},\mathsf{f}):(\mathsf{s},\mathsf{f})^+}: \mathbb{W}^{\mathsf{s}}_{\mathsf{s}} \times \underbrace{\prod_{\mathfrak{f}'=\underline{\mathsf{f}}^+}^{\mathsf{f}} \mathbb{W}^{\mathsf{sf}}_{(\mathsf{s},\mathsf{f}')}}_{\operatorname{interval}[\mathsf{s}^-,\mathsf{s}[} \longrightarrow \Delta(\mathbb{W}^{\mathsf{sf}}_{(\mathsf{s},\mathsf{f})^+})$$

49 / 58

We represent both time scales on a unified timeline

where we denote the successor of (s, f) by

$$(s,f)^+ = \begin{cases} (s,f^+) & \text{if } f \neq \bar{f} \\ (s^+,\underline{f}) & \text{if } f = \bar{f} \end{cases}$$

We represent both time scales on a unified timeline

$$\begin{split} \mathbb{X}_{(s,f)} &= \begin{cases} \mathbb{X}_s^s & \text{if } f = \overline{f} \\ \mathbb{X}_{(s,f)}^{sf} & \text{if } f \neq \overline{f} \end{cases}, \ \forall (s,f) \in \overline{S \times F} \\ \mathbb{U}_{(s,f)} &= \begin{cases} \mathbb{U}_s^s & \text{if } f = \overline{f} \\ \mathbb{U}_{(s,f)}^{sf} & \text{if } f \neq \overline{f} \end{cases}, \ \forall (s,f) \in \overline{S \times F} \setminus \{(\overline{s},\overline{f})\} \\ \mathbb{W}_{(s,f)} &= \begin{cases} \mathbb{W}_s^s & \text{if } f = \underline{f} \\ \mathbb{W}_{(s,f)}^{sf} & \text{if } f \neq \underline{f} \end{cases}, \ \forall (s,f) \in S \times F \\ \mathbb{W}_{(\underline{s}^-,\overline{f})} &= \mathbb{X}_{(\underline{s}^-,\overline{f})} \\ \mathbb{F}_{(s,f)} &= \begin{cases} \mathcal{F}_s^s & \text{if } f = \overline{f} \\ \mathcal{F}_{(s,f)}^{sf} & \text{if } f \neq \overline{f} \end{cases}, \ \forall (s,f) \in \overline{S \times F} \setminus \{(\overline{s},\overline{f})\} \end{split}$$

We can write a dynamic programming equation at the slow time scale

We perform a time-block decomposition on the subset of instants $\left\{ (s, \overline{f}) \right\}_{s \in S \cup \{s^-\}} \subset \overline{S \times F}$

$$\begin{split} \bigvee_{s}(x_{s}^{s}) &= \inf_{u_{s} \in \mathbb{U}_{s}^{s}} \int_{\mathbb{W}_{s^{+}}^{s}} \rho_{s:s^{+}}^{s}(dw_{s^{+}}^{s}) \\ &\inf_{u_{(s^{+},\bar{f})}^{sf} \in \mathbb{U}_{(s^{+},\bar{f})}^{sf}} \int_{\mathbb{W}_{(s^{+},\bar{f}^{+})}^{sf}} \rho_{(s^{+},\bar{f}^{+})}^{sf}(dw_{(s^{+},\bar{f}^{+})}^{sf} \mid w_{s^{+}}^{s}) \cdots \\ &\inf_{u_{(s^{+},\bar{f}^{-})}^{sf} \in \mathbb{U}_{(s^{+},\bar{f}^{-})}^{sf}} \int_{\mathbb{W}_{(s^{+},\bar{f})}^{sf}} \rho_{(s^{+},\bar{f}^{-}):(s^{+},\bar{f})}^{sf}(dw_{(s^{+},\bar{f})}^{sf} \mid w_{s^{+}}^{s}, w_{(s^{+},\bar{f}^{+})}^{sf}, \cdots, w_{(s^{+},\bar{f}^{-})}^{sf}) \\ & \left(\bigwedge_{s}(x_{s}^{s}, u_{s}, w_{s^{+}}^{s}, \dots, u_{(s^{+},\bar{f}^{-})}^{sf}, w_{(s^{+},\bar{f})}^{sf}) \\ & + \bigvee_{s^{+}} \left(\mathcal{F}_{s:s^{+}}(x_{s}^{s}, u_{s}, w_{s^{+}}^{s}, \dots, u_{(s^{+},\bar{f}^{-})}^{sf}, w_{(s^{+},\bar{f})}^{sf}) \right) \right) \end{split}$$

- 1. Part I: Monthly crude oil procurement problem
- 1.1 Modeling of the crude oil procurement and formulation of an optimal control problem
- 1.2 Resolution methods
- 1.3 Numerical results
- 2. Part II: Time-blocks decomposition and the multi-months procurement problem
- 2.1 The multi-months procurement problem
- 2.2 Time-blocks decomposition
- 2.3 Two time scales optimization problem
- 2.4 Back to the procurement problem

We recall the multi-months procurement problem

$$\begin{split} & \underset{\{\boldsymbol{b}_{(m,w)}^{m}\}(\boldsymbol{m},w),\boldsymbol{m}')\in\mathfrak{P}}{\min} \quad \mathbb{E}\bigg[\sum_{(m,w)\in M\times W} \bigg(\sum_{m'\in(m,w)\mathfrak{P}} \Omega_{(m,w)}^{m'}(\boldsymbol{d}_{(m,w)}^{m'}, \boldsymbol{b}_{(m,w)}^{m'}, \boldsymbol{w}_{(m,w)})\bigg) + \sum_{m\in M} \Psi_{m}(\boldsymbol{s}_{m}, \boldsymbol{d}_{(m,w)}^{m}, \boldsymbol{v}_{m}, \boldsymbol{r}_{m}, \boldsymbol{p}_{m})\bigg] \\ & \text{s.t} \quad \boldsymbol{b}_{(m,w)}^{m'}\in \mathfrak{P}_{(m,w)}^{m'}, \quad \forall m'\in M, \quad \forall (m,w)\in\mathfrak{P}m' \quad \text{constraints on decisions} \\ & \boldsymbol{v}_{m}\in \mathfrak{P}_{m}, \quad \forall m\in M \\ & \boldsymbol{r}_{m}\in \mathfrak{R}_{m}, \quad \forall m\in M \\ & \boldsymbol{d}_{(m,w)}^{m}\in \mathfrak{D}^{m}, \quad \forall m\in M \\ & \boldsymbol{d}_{(m,w)}^{m}\in \mathfrak{S}_{m}^{m}, \quad \forall m\in M \\ & \boldsymbol{d}_{(m,w)}^{m}\in \mathfrak{S}_{m}, \quad \forall m\in M \\ & \boldsymbol{d}_{(m,w)}^{m} \in \mathfrak{S}_{m}, \quad \forall m\in M \\ & \boldsymbol{d}_{(m,w)}^{m} = \mathfrak{F}_{(m,w)}^{m'}(\boldsymbol{d}_{(m,w)}^{m'}, \boldsymbol{b}_{(m,w)}^{m'}), \quad \forall ((m,w),m')\in \mathfrak{P} \\ & \boldsymbol{s}_{m+} = \mathcal{F}_{m}(\boldsymbol{s}_{m}, \boldsymbol{d}_{(m,w)}^{m}, \boldsymbol{v}_{m}), \quad \forall m\in M \\ & \sigma(\boldsymbol{b}_{(m,w)}^{m'}) \subset \sigma(\{\boldsymbol{p}_{m''}\}_{m''\leq m}, \{\boldsymbol{w}_{(m'',w'')}\}_{(m'',w'')\leq (m,w)}^{m''}) \quad \text{nonanticipativity constraints} \end{split}$$

 $\sigma(\mathbf{v}_{\mathsf{m}},\mathbf{r}_{\mathsf{m}}) \subset \sigma(\{\mathbf{p}_{\mathsf{m}''}\}_{\mathsf{m}'' \leq \mathsf{m}},\{\mathbf{w}_{(\mathsf{m}'',\mathsf{w}'')}\}_{(\mathsf{m}'',\mathsf{w}'') \leq (\mathsf{m},\underline{\mathsf{w}})})$

Notations	Crude oil procurement				
S	set of months during which we manage the refinery;				
F	set of weeks in each month;				
\mathbb{U}_{s}^{s}	set of crude oil consumptions during the month s ⁺				
$\mathbb{W}^{s}_{s^+}$	set of product prices for the month s^+				
$\mathbb{U}^{sf}_{(s,f)}$	set of crude shipments purchased in week (s, f)				
W ^{sf} _(s,f) ⁺	set of crude oil prices in week (s, f)				
$\mathcal{F}_{(s,f)}^{sf}$	dynamic accumulation of shipments purchased in (s, f)				
\mathcal{F}_{s}^{s}	dynamics of the stocks inside the refinery between s and s^+				
Λ _s	operational costs during the month s				
	(crude oil purchases during s - earnings from production)				

The general procurement problem fits a two time scales problem

$$\begin{split} &\inf \mathbb{E}\Big[\sum_{s\in S}\Lambda_s\big(X_{s^-}^s, U_{s^-}^s, W_s, \{X_{(s,f)}^{sf}, U_{(s,f)}^{sf}, W_{(s,f)^+}^f\}_{f\in F\setminus\{\overline{f}\}}\big) + \Lambda_{\overline{s}}\big(X_{\overline{s}}^s\big)\Big] \\ & s.t. \ U_{(s,f)}^{sf} \in \mathbb{U}_{(s,f)}^{sf}, \ \forall (s,f) \in \overline{S \times F} \\ & U_s^s \in \mathbb{U}_s^s, \ \forall s \in \overline{S} \end{split}$$

$$\begin{split} & X^{s}_{s} \in \mathbb{X}^{s}_{s} \;, \;\; \forall s \in \overline{S} \\ & X^{sf}_{(s,f)} \in \mathbb{X}^{sf}_{(s,f)} \;, \;\; \forall (s,f) \in \overline{S {\times} F} \end{split}$$

$$\begin{split} X^{\mathrm{sf}}_{(\mathsf{s},\mathsf{f})^+} &= \mathcal{F}^{\mathrm{sf}}_{(\mathsf{s},\mathsf{f})}(X^{\mathrm{sf}}_{(\mathsf{s},\mathsf{f})}, U^{\mathrm{sf}}_{(\mathsf{s},\mathsf{f})}, W^{\mathrm{sf}}_{(\mathsf{s},\mathsf{f})^+}) \\ X^{\mathrm{s}}_{\mathrm{s}^+} &= \mathcal{F}^{\mathrm{s}}_{\mathrm{s}}(X^{\mathrm{s}}_{\mathrm{s}}, U^{\mathrm{s}}_{\mathrm{s}}, W^{\mathrm{s}}_{\mathrm{s}^+}) \ , \ \forall \mathsf{s} \in \mathsf{S} \backslash \{\bar{\mathsf{s}}\} \end{split}$$

$$\begin{aligned} \sigma\left(U_{(\mathsf{s},\mathsf{f})}^{\mathsf{sf}}\right) &\subset \sigma\left(\{W_{\mathsf{s}'}^{\mathsf{s}}\}_{\mathsf{s}'\prec\mathsf{s}}, \{W_{(\mathsf{s}',\mathsf{f}')}^{\mathsf{sf}}\}_{(\mathsf{s}',\mathsf{f}')\prec(\mathsf{s},\mathsf{f})}\right) \\ \sigma\left(U_{\mathsf{s}}^{\mathsf{s}}\right) &\subset \sigma\left(\{W_{\mathsf{s}}^{\mathsf{s}}\}_{\mathsf{s}'\prec\mathsf{s}}, \{W_{(\mathsf{s}',\mathsf{f}')}^{\mathsf{sf}}\}_{(\mathsf{s}',\mathsf{f}')\prec(\mathsf{s},\mathsf{f})}\right) \\ 56/58 \end{aligned}$$

- Given a value function V_s and a state $x_{s^-}^s$, computing $V_{s^-}(x_{s^-}^s) \approx$ solving a monthly problem
- Two time scales decomposition assumes month-wise independence of the noises

 \hookrightarrow crude oil prices inside a month are time-dependent

• Various methods can be used to solve the problem inside each month

 \hookrightarrow adapt policies from Part I to approximate value functions

The end

• We built a model for the crude oil procurement that models uncertainties and delivery delays

• Multi-scenarios-based policies showed promising results on the monthly procurement problem

- We developed a framework to decompose two time scales problems at the slow scale, without independent fast scale noises
- Next: Adapt the policies from Part I to the multi-months problem