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Crude oil procurement overview

M1 M2 M3 M4

19 crude oils on the market
H4 H2

H3
B5

B1
B4 B3

B2

L2

L8
L6

8 purchase weeks

95/98

finished products

stock inside
the refinery

How do we optimally manage the crude purchases

while taking into account delivery times and uncertainties?
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Comparing policies under uncertainty:

average and spread

Histograms of the operating margins for two policies

(higher is better)
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Outline of the presentation

1. Part I: Monthly crude oil procurement problem

2. Part II: Time-blocks decomposition

and the multi-months procurement problem
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Purchase and delivery timeline

M1

1 2 3 4

M2

1 2 3 4

M3

1 2 3 4

stock inside
the refinery

• One single delivery/consumption month M3

• Crude purchases over the two months M1 and M2

preceding M3
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Purchase and delivery timeline

M1

1 2 3 4

M2

1 2 3 4

M3

1 2 3 4

stock inside
the refinery

(M1, 1) (M1, 2) (M1, 3) (M1, 4) (M2, 1) (M2, 2) (M2, 3) (M2, 4) (M3, 1)

1 2 3 4 5 6 7 8 9

For ease of use we denote the timespan of the problem

T = (1, 2, 3, 4, 5, 6, 7, 8)

with t = 1 = (M1, 1) t = 8 = (M2, 4)

t+ = the successor of t t+ = 9 = (M3, 1)
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We identify decision variables

Each week, a set of crudes is available for purchase

1

M1

2 3 4 1

M2

2 3 4 1

M3

b1 b2 b3 b4 b5 b6 b7 b8 v, r

H4 H2 H3 H5

H1

H6

B5 B1 B4

B3

B2

L2 L8 L6

L5

L7 L1 L3 L4

We identify 3 types of decision

• Cargos {bt}t∈T represent the quantities of crude purchased

• Volumes v represent the crude oil consumed

• Settings r of the refinery are applied during the month M3
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We identify decision variables

Each week, a set of crudes is available for purchase

1

M1

2 3 4 1

M2

2 3 4 1

M3

b1 b2 b3 b4 b5 b6 b7 b8 v, r

H4 H2 H3 H5

H1

H6

B5 B1 B4

B3

B2

L2 L8 L6

L5

L7 L1 L3 L4

Crude oil is available in fixed quantities (full tanker)

b1 = (0, . . . , 0, bB5
1 , 0, . . . , 0, bL2

1 , 0, . . . , 0) ∈ B1 ⊂ R19
+

bB5
1 = 0 or 1.5 million barrels

bL2
1 = 0 or 2.3 million barrels

}
→ |B1| = 4
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We identify sources of uncertainty

1

M1

2 3 4 1

M2

2 3 4 1

M3

w1 w2 w3 w4 w5 w6 w7 w8 p

H4 H2 H3 H5

H1

H6

B5 B1 B4

B3

B2

L2 L8 L6

L5

L7 L1 L3 L4

We model two sources of uncertainty

• Prices {wt}t∈T of all crudes at the beginning of each week t

• Price p of all products at the beginning of the month M3
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Checkpoint

We have

• specified a time structure

• identified decision variables

• identified sources of uncertainty

We will

• explicit a coupling constraint on crude purchases

• propose an economic function

• write multistage stochastic optimization problems
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Not all crudes can be processed together

• Due to the limited treatment capacity of the refinery

• Due to chemical properties making crudes incompatible

1

M1

2 3 4 1

M2

2 3 4 1

M3

b1 b2 b3 b4 b5 b6 b7 b8 v, r

H4 +H2 +L8 = H4 +B3 +L3 = ✓

H4 H2 H3 H5

H1

H6

B5 B1 B4

B3

B2

L2 L8 L6

L5

L7 L1 L3 L4

• Purchase exactly 3 shipments

• No more than one cargo of heavy crude

• No more than one cargo of light crude

• No constraint on balanced crude
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Coupling constraint on the purchases

The compatible crude combinations are described by a set D

compatible combinations︷ ︸︸ ︷∑

t∈T

bt ∈ D ⊂ R19
+ |D| = 520

where, for example

∑

t∈T

bt = ( 1.5︸︷︷︸
H4

, 0, . . . , 0, 1.4︸︷︷︸
B3

, 0, . . . , 0, 2︸︷︷︸
L3

)× 106 barrels
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Cost function

cost function︷ ︸︸ ︷∑

t∈T

bt · wt︸ ︷︷ ︸
purchase costs

in week t

+ Ψ
(∑

t∈T

bt, v , r , p
)

︸ ︷︷ ︸
refinery cost function

(operation costs
− incomes from selling products)
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Formulation of a multistage stochastic optimization problem

min
{bt}t∈T

v ,r

E
[∑

t∈T

bt ·w t + Ψ(
∑

t∈T

bt, v , r ,p)
]

s.t
∑

t∈T

bt ∈ D coupling constraint

bt ∈ Bt , ∀t ∈ T cargos availability

v ∈ V , r ∈ R management of the refinery

σ(bt) ⊂ σ(w t, · · · ,w t) , ∀t ∈ T

σ(v , r )︸ ︷︷ ︸
σ−algebra

⊂ σ(w t, · · · ,w t,p)
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Nonanticipativity constraints

The last two constraints are nonanticipativity constraints: they

represent, in mathematical terms, that decisions taken at time t

only depend on past uncertainties

w1  b1  w2  b2  w3  b3  w4  b4

 w5  b5  w6  b6  w7  b7  w8  b8

 p  (v , r )

• The purchase decision bt is taken knowing past prices

σ(bt) ⊂ σ(w t, · · · ,w t) ⇔ bt = φt({wt′}t′≤t) , ∀t ∈ T

• Consumption and settings are decided

after the product prices are revealed

σ(v , r ) ⊂ σ(w t, · · · ,w t,p) ⇔ (v , r ) = φ({wt}t∈T, p)
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We turn to stochastic optimal control

• We propose a state d with a dynamic

• We formulate a stochastic optimal control problem

• We then propose 5 policies:

Expert, MPC, SDPesp , SDPCVaR , Succ-SDP

State
policy in t

dt,wt bt
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We introduce a buffer for the month M3

• We propose the state variable (buffer)

dt =
∑

t′<t

bt′ ∈ RC , ∀t ∈ T ∪ {t+}

with dynamics dt+ = dt + bt , ∀t ∈ T

• Backward recursive propagation of the target constraint

Dt+ = D

Dt = {dt ∈ D | ∃bt ∈ Bt , dt + bt ∈ Dt+} , ∀t ∈ T

• We reduce the size of the decision set

B̃t(d ) = {b ∈ Bt | dt + b ∈ Dt+} ⊂ Bt , ∀t ∈ T

17 / 58



Reformulation as a stochastic optimal control problem

min
{bt}t∈T

v ,r

E
[∑

t∈T

bt ·w t + Ψ(d
t+ , v , r ,p)

]

s.t d
t+ ∈ Dt+ target constraint

d t ∈ Dt , ∀t ∈ T state variable

d t+ = d t + bt , ∀t ∈ T state dynamic

bt ∈ B̃t(d t) , ∀t ∈ T

v ∈ V , r ∈ R

σ(bt) ⊂ σ(w t, · · · ,w t) , ∀t ∈ T

σ(v , r ) ⊂ σ(w t, · · · ,w t,p)
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Single scenario based methods

Expert’s method (static deterministic)

• crude prices wt are observed

• a forecast p̃ of the products prices is given

• all 19 crudes are tested individually with wt and p̃

• if the best one is available, purchase it

Model Predictive Control (deterministic dynamic)

• crude prices wt are observed

• a forecast p̃ of the products prices is given

• a forecast (w̃t+ , . . . , w̃t
) of crude prices is given

• solve the deterministic problem over the interval Jt, tK
• take the first optimal decision b∗t
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Stochastic dynamic programming (value functions)

Before the first week

• we build

• 600 crude prices scenarios {(ŵ s
t , . . . , ŵ

s
t

)}s∈J1,600K

• 10 product prices {p̂m}m∈J1,10K

• we recursively compute value functions

V
t+(d ) =

1

10

10∑

m=1

min
vm,rm

Ψ(d , vm, rm, p̂m) , ∀d ∈ Dt+

Vt(d ) =
1

600

600∑

s=1

min
bst∈B̃t(d )

(
bst · ŵ s

t + Vt+(d + bst )
)
, ∀d ∈ Dt , ∀t ∈ T

Using the sets {Dt}t∈T and {B̃t}t∈T reduces computation

by a factor > 10 compared to using D and {Bt}t∈T
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Using a risk measure

We can use a risk measure other than E in the value functions

V CVaRα
t+ (d ) = CVaRαp̂

[
min
v ,r

Ψ(d , v , r , p̂)

]
, ∀d ∈ Dt+

V CVaRα
t (d ) = CVaRαŵ t

[
min

bt∈B̃t(d )

(
bt · ŵ t + V CVaRα

t+ (d + bt)
)]

, ∀d ∈ Dt , ∀t ∈ T
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Stochastic dynamic programming (optimal policy)

• Each week t, we solve a static optimization problem

after the observation of the crude prices wt

min
bt∈B̃t(dt)

bt · wt + Vt+(dt + bt)

• The solution to this problem is the control

given by the SDP-policy
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Successive SDP (Succ-SDP)

Each week, we have time to compute new value functions

• crude prices wt are observed

• build N crude prices scenarios {(ŵ s
t+ . . . , ŵ s

t
)}s∈J1,NK

• a forecast p̃ of the products prices is given

• recursively compute new value functions every week

V̂
t+(d ) = min

v ,r
Ψ(d , v , r , p̃) , ∀d ∈ Dt+

V̂t′(d ) =
1

N

N∑

s=1

(
min

bs
t′∈B̃t′ (d )

(
bst′ · ŵ s

t′ + V̂t′+1(d + bst′)
))

, ∀d ∈ Dt′ , ∀t′ ∈ Jt+, tK

• the decision b∗t is a solution of

min
bt∈B̃t(dt)

bt × wt + V̂t+(dt + bt)
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Policy assessment in an industrial setting

• Monte-Carlo simulations (1000 scenarios)

• Succ-SDP is too heavy to be tested this way

• assessment of 4/5 policies

• comparison of histograms of margins

• Historical scenarios

• replay the past for all 5 policies

• comparison of margins and decisions
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Net margins assessed over 1000 scenarios (Monte-Carlo)

Histograms of margins (higher to the right = better)
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Policies are compared on historical scenarios

• We replay the scenario of December 2020

(w(O,1),w(O,2),w(O,3),w(O,4),w(N,1),w(N,2),w(N,3),w(N,4), pD)

• We test each policy on this historical scenario

Expert MPC SDPesp SDPCVaR5%
Succ-SDP

margin (×107$) 5.1 7.5 6.4 6.4 7.5

gap −− 46% 25% 25% 46%

crude 1 H2 H4 L2 L2 H5

crude 2 L2 L2 H1 H1 L2

crude 3 B5 B1 B1 B1 B1
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Policies are compared on historical scenarios

• We replay every month from October 2020 to February 2021

• We compare the cumulated performances over 5 months

Expert MPC SDPesp SDPCVaR5%
Succ-SDP

margin (×107$) 5.4 26.7 10.1 10.1 27.2

gap −− 394% 88% 88% 402%

• Only MPC and Succ-SDP yield positive margins for all months

• Only Succ-SDP outperforms Expert every month

• Succ-SDP slightly edges out MPC;

they are the best performing policies
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Conclusion of Part I

• Model for crude oil procurement under uncertainty in which

• we purchase crude oil every week

• we pilot the refinery every month

• Multistage stochastic optimization problem

for a single delivery month

• We have compared 5 resolution methods

• MPC and Succ-SDP are the best performing policies

and they use the price forecast p̃

There are substantial potential gains in designing policies

based on multistage (stochastic) optimization
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We manage the refinery for any number of months

M0 M1

1 2 3 4

M2

1 2 3 4

M3

1 2 3 4 12 3 4

M4

refinery
stocks

crude oil shipments purchased every week

refinery stock consumption every month
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New elements for multi-months procurement

• Oil can only be purchased up to 2 months in advance

(m,w)Pm′ (m,w) is a purchase week for the month m′

PM3 = {(M1, 1), (M1, 2), · · · , (M2, 4)}
PM4 = {(M2, 1), (M2, 2), · · · , (M3, 4)}

• Purchases (and buffers) target a specific month

bm′
(m,w) oil purchased in (m,w) for a delivery in m′ > m

dm′
(m,w) state of the m′−buffer in (m,w)

• The refinery is operated on a monthly basis

vm crude oil consumption for the month m

rm refinery settings for the month m

• Stocks follow a monthly dynamic

sm oil in stocks at the beginning of the month m

sm+ = Fm(sm,d
m
(m,w), vm)

34 / 58



We formulate a corresponding optimization problem

min
{bm′

(m,w)}((m,w),m′)∈P
{vm,rm}m∈M

E

[ ∑

(m,w)∈M×W

( ∑

m′∈(m,w)P

Ωm′
(m,w)(dm′

(m,w),b
m′
(m,w),w (m,w))

)
+
∑

m∈M

Ψm(sm,d
m
(m,w), vm, rm,pm)

]

s.t bm′
(m,w) ∈ Bm′

(m,w) , ∀m′ ∈ M , ∀(m,w) ∈ Pm′ constraints on decisions

vm ∈ Vm , ∀m ∈ M

rm ∈ Rm , ∀m ∈ M

dm
(m,w) ∈ Dm , ∀m ∈ M constraints on stocks

sm ∈ Sm , ∀m ∈ M

dm
minPm = 0 , ∀m ∈ M dynamics on the stocks

dm′
(m,w)+ = Fm′

(m,w)(dm′
(m,w),b

m′
(m,w)) , ∀((m,w),m′) ∈ P

sm+ = Fm(sm,d
m
(m,w), vm) , ∀m ∈ M

σ(bm′
(m,w)) ⊂ σ({pm′′}m′′≤m, {w (m′′,w′′)}(m′′,w′′)≤(m,w)) nonanticipativity constraints

σ(vm, rm) ⊂ σ({pm′′}m′′≤m, {w (m′′,w′′)}(m′′,w′′)≤(m,w))

35 / 58



Checkpoint

Can we leverage the month/week repetitive structure ?

that is, decompose the problem by monthly blocks to

• solve the problem by dynamic programming (DP)

at the monthly scale

• without having to do DP at the weekly scale
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Dynamic programming equations on subset of instants

We consider a subset of N instants in J0,TK

0 = t0 < t1 < · · · < tN = T

0 = t0 t1 t2 tN−1 T = tN

t ∈ J0,TK

We will build

• reduced Bellman operators {B̃ti+1:ti}i∈J0,N−1K

• reduced value functions {Ṽti}i∈J0,NK

ṼtN = ̃

Ṽti = B̃ti+1:ti Ṽti+1 , ∀i ∈ J0,N − 1K
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We introduce histories . . .

• (U0,U0),. . . , (UT−1,UT−1) are measurable control spaces

• (W0,W0),. . . , (WT,WT) are measurable noise spaces

We define histories for the full timespan

H0 = W0

Ht = W0 ×
t∏

s=1

(Us−1 ×Ws) , ∀t ∈ J1,TK

ht ∈ Ht contains all the past information
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. . . with which we can define an elementary Bellman operator

We define the elementary Bellman operator Bt+1:t by

(
Bt+1:tϕ

)
(ht) = inf

ut∈Ut

∫

Wt+1

ϕ(ht, ut,wt+1︸ ︷︷ ︸
=ht+1

)ρt:t+1(dwt+1 | ht)

where ρt:t+1 is the stochastic kernel at time t (noise distribution)

ρt:t+1 : Ht −→ ∆(Wt+1)

0 = t0 t1 t2 tN−1 T = tN

BtN :tN−1Bt2:t2−1Bt1+1:t1Bt1:1B1:0

40 / 58



. . . with which we can define an elementary Bellman operator

We define the elementary Bellman operator Bt+1:t by

(
Bt+1:tϕ

)
(ht) = inf

ut∈Ut

∫

Wt+1

ϕ(ht, ut,wt+1︸ ︷︷ ︸
=ht+1

)ρt:t+1(dwt+1 | ht)

where ρt:t+1 is the stochastic kernel at time t (noise distribution)

ρt:t+1 : Ht −→ ∆(Wt+1)

0 = t0 t1 t2 tN−1 T = tN

BtN :tN−1Bt2:t1Bt1:t0

where Bt2:t1 = Bt1+1:t1 ◦Bt1+2:t1+1 ◦ · · · ◦Bt2:t2−1
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Assuming a state reduction . . .

Hti ×Hti+1:ti+1 Hti+1

Xti ×Hti+1:ti+1
Xti+1

θti Id

Id

θti+1

fti:ti+1

1

We assume

• {(Xti ,Xti )}i∈J0,NK, measurable state sets

• {θti}i∈J0,NK, measurable state mappings

• {fi :i+1}i∈J0,N−1K, measurable dynamics

such that

θti+1

(
(hti , hti+1:ti+1)

)
= fti :ti+1

(
θti (hti ), hti+1:ti+1

)
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. . . that is compatible with kernels . . .

Hti ×Hti+1:t ∆(Wt+1)

Xti ×Hti+1:t

θti Id

ρt:t+1

ρ̃t:t+1

1

There exists a family {ρ̃s−1:s}s∈Jti+1,ti+1K

of reduced stochastic kernels such that

ρ̃ti :ti+1 : Hti → ∆(Wti+1)

ρti :ti+1

(
dwti+1

∣∣ hti

)
= ρ̃ti :ti+1

(
dwti+1

∣∣ θti (hti )
)

ρ̃t−1:t : Hti ×Hti+1:t−1 → ∆(Wt)

ρt−1:t

(
dwt

∣∣ hti , hti+1:t

)
= ρ̃t−1:t

(
dwt

∣∣ θti (hti ), hti+1:t−1

)
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. . . then we can write a reduced Bellman operator

L0
+(Hti+1

,Hti+1
) L0

+(Hti ,Hti)

L0
+(Xti+1

,Xti+1
) L0

+(Xti ,Xti)

Bti+1:ti

θ?ti+1

B̃ti+1:ti

θ?ti

1

Consequently, there exists the family {B̃ti+1:ti}ı∈J1,N−1K

of reduced Bellman operators such that

B̃ti+1:ti : L0
+(Xti+1 ,Xti+1)→ L0

+(Xti ,Xti )(
B̃ti+1:ti ϕ̃ti+1

)
◦ θti = Bti+1:ti (ϕ̃ti+1 ◦ θti+1)
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We can now write a Bellman operator across (ti , ti+1)

(
B̃ti+1:ti ϕ̃ti+1

)
(xti ) = inf

uti
∈Uti

∫

Wti+1

ρ̃ti :ti+1( dwti+1 | xti )

inf
uti+1∈Uti+1

∫

Wti+2

ρ̃ti+1:ti+2( dwti+2 | xti , uti ,wti+1) · · ·

inf
uti+1−1∈Uti+1−1

∫

Wti+1

ρ̃ti+1−1:ti+1( dwti+1 | xti , uti ,wti+1, . . . , uti+1−2,wti+1−1)

ϕ̃ti+1

(
fti :ti+1(xti , uti ,wti+1, . . . , uti+1−1,wti+1)

)

0 = t0 t1 t2 tN−1 T = tN

BtN :tN−1Bt2:t1Bt1:t0 θtN−1

XtN−1

θtN

XtN

B̃tN :tN−1

θt2

Xt2

B̃t2:t1

θt1

Xt1

θt0

Xt0

B̃t1:t0

44 / 58



Checkpoint

• Computing reduced Bellman operators

does not produce computational gains

• In practice we can now

• decompose the problem block-by-block

• compute approximate value functions

in the subset of instants

• We will now apply time-blocks decomposition

to a two time scales problem
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We now consider two time scales

• A slow scale (e.g months)

min S = s ≺ · · · ≺ s− ≺ s ≺ s+ ≺ · · · ≺ s = max S

where s− is the predecessor to s

s+ is the successor to s

• A fast scale (e.g weeks)

min F = f ≺ · · · ≺ f− ≺ f ≺ f+ ≺ · · · ≺ f = max F
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Two time scales setting

• Slow

• {Us
s}s∈S\{s}, slow scale decision measurable sets

• {Ws
s}s∈S, slow scale uncertainty measurable sets

• Fast

• {Usf
(s,f)}(s,f)∈S×(F\{f}), fast scale decision measurable sets

• {Wsf
(s,f)}(s,f)∈S×(F\{f}), fast scale uncertainty measurable sets

• States

• {Xs
s}s∈S, slow time scale state sets

↪→ with the dynamic Fs
s : Xs

s×Us
s×Ws

s+ → Xsf
(s+,f)

• {Xsf
(s,f)}(s,f)∈S×(F\{f}), fast time scale state sets

↪→ with the dynamic Fsf
(s,f) : Xsf

(s,f)×Usf
(s,f)×Wsf

(s,f)+ → Xsf
(s,f)+
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We introduce criterion and kernels

We consider the criterion

j(h(s,f)) =
∑

s∈S

Λs−
(slow scale variables︷ ︸︸ ︷

x s
s− , us− ,w

s
s ,

fast scale variables in [s−, s[︷ ︸︸ ︷
{x sf

(s,f), u
sf
(s,f),w

sf
(s,f)+}

f∈F\{f}

)

︸ ︷︷ ︸
cost for the period [s−, s[

+ Λs

(
x s

s

)
︸ ︷︷ ︸
final cost

We consider 2 types of stochastic kernels

that ensure block-wise independence:

• Constant slow scale kernels

ρs
s:s+ ∈ ∆(Ws

s+)

• Fast scale stochastic kernels

ρsf
(s,f):(s,f)+ : Ws

s ×
f∏

f′=f+

Wsf
(s,f′)

︸ ︷︷ ︸
interval [s−,s[

−→ ∆(Wsf
(s,f)+)
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We represent both time scales on a unified timeline

s− s s+ s̄− s̄

(s−, f̄) (s, f) (s, f̄) (s+, f) (s+, f̄) (s̄−, f̄) (s̄, f) (s̄, f̄)

S
S

· · ·

S×F

· · ·
{s}×F

S×F

· · ·

{s+}×F

· · · · · ·
{s̄}×F

1

where we denote the successor of (s, f) by

(s, f)+ =





(s, f+) if f 6= f

(s+, f) if f = f
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We represent both time scales on a unified timeline

X(s,f) =




Xs

s if f = f

Xsf
(s,f) if f 6= f

, ∀(s, f) ∈ S×F

U(s,f) =




Us

s if f = f

Usf
(s,f) if f 6= f

, ∀(s, f) ∈ S×F \ {(s, f)}

W(s,f) =




Ws

s if f = f

Wsf
(s,f) if f 6= f

, ∀(s, f) ∈ S×F

W
(s−,f)

= X(s−,f)

F(s,f) =




Fs

s if f = f

Fsf
(s,f) if f 6= f

, ∀(s, f) ∈ S×F \ {(s, f)}
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We can write a dynamic programming equation

at the slow time scale

We perform a time-block decomposition

on the subset of instants
{

(s, f)
}

s∈S∪{s−}
⊂ S×F

Vs(x
s
s ) = inf

us∈Us
s

∫

Ws
s+

ρs
s:s+( dw s

s+)

inf
usf

(s+,f)
∈Usf

(s+,f)

∫

Wsf
(s+,f+)

ρsf
(s+,f):(s+,f+)( dw sf

(s+,f+) |w s
s+) · · ·

inf
usf

(s+,f
−

)
∈Usf

(s+,f
−

)

∫

Wsf
(s+,f)

ρsf

(s+,f
−

):(s+,f)
( dw sf

(s+,f)
|w s

s+ ,w sf
(s+,f+), · · · ,w sf

(s+,f
−

)
)

(
Λs(x

s
s , us,w

s
s+ , . . . , usf

(s+,f
−

)
,w sf

(s+,f)
)

+ Vs+

(
Fs:s+(x s

s , us,w
s
s+ , . . . , usf

(s+,f
−

)
,w sf

(s+,f)
)
))
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Outline of the presentation

1. Part I: Monthly crude oil procurement problem

1.1 Modeling of the crude oil procurement

and formulation of an optimal control problem

1.2 Resolution methods

1.3 Numerical results

2. Part II: Time-blocks decomposition

and the multi-months procurement problem

2.1 The multi-months procurement problem

2.2 Time-blocks decomposition

2.3 Two time scales optimization problem

2.4 Back to the procurement problem
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We recall the multi-months procurement problem

min
{bm′

(m,w)}((m,w),m′)∈P
{vm,rm}m∈M

E

[ ∑

(m,w)∈M×W

( ∑

m′∈(m,w)P

Ωm′
(m,w)(dm′

(m,w),b
m′
(m,w),w (m,w))

)
+
∑

m∈M

Ψm(sm,d
m
(m,w), vm, rm,pm)

]

s.t bm′
(m,w) ∈ Bm′

(m,w) , ∀m′ ∈ M , ∀(m,w) ∈ Pm′ constraints on decisions

vm ∈ Vm , ∀m ∈ M

rm ∈ Rm , ∀m ∈ M

dm
(m,w) ∈ Dm , ∀m ∈ M constraints on stocks

sm ∈ Sm , ∀m ∈ M

dm
minPm = 0 , ∀m ∈ M dynamics on the stocks

dm′
(m,w)+ = Fm′

(m,w)(dm′
(m,w),b

m′
(m,w)) , ∀((m,w),m′) ∈ P

sm+ = Fm(sm,d
m
(m,w), vm) , ∀m ∈ M

σ(bm′
(m,w)) ⊂ σ({pm′′}m′′≤m, {w (m′′,w′′)}(m′′,w′′)≤(m,w)) nonanticipativity constraints

σ(vm, rm) ⊂ σ({pm′′}m′′≤m, {w (m′′,w′′)}(m′′,w′′)≤(m,w))
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Translation of the two time scales to the procurement

Notations Crude oil procurement

S set of months during which we manage the refinery;

F set of weeks in each month;

Us
s set of crude oil consumptions during the month s+

Ws
s+ set of product prices for the month s+

Usf
(s,f) set of crude shipments purchased in week (s, f)

Wsf
(s,f)+ set of crude oil prices in week (s, f)

Fsf
(s,f) dynamic accumulation of shipments purchased in (s, f)

Fs
s dynamics of the stocks inside the refinery between s and s+

Λs operational costs during the month s

(crude oil purchases during s - earnings from production)
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The general procurement problem

fits a two time scales problem

infE
[∑

s∈S

Λs

(
X s

s− ,U
s
s− ,Ws, {X sf

(s,f),U
sf
(s,f),W

f
(s,f)+}

f∈F\{f}

)
+ Λs

(
X s

s

)]

s.t. Usf
(s,f) ∈ Usf

(s,f) , ∀(s, f) ∈ S×F

Us
s ∈ Us

s , ∀s ∈ S

X s
s ∈ Xs

s , ∀s ∈ S

X sf
(s,f) ∈ Xsf

(s,f) , ∀(s, f) ∈ S×F

X sf
(s,f)+ = Fsf

(s,f)(X sf
(s,f),U

sf
(s,f),W

sf
(s,f)+)

X s
s+ = Fs

s

(
X s

s ,U
s
s ,W

s
s+

)
, ∀s ∈ S\{s}

σ
(
Usf

(s,f)

)
⊂ σ

(
{W s

s′}s′≺s, {W sf
(s′,f′)}(s′,f′)≺(s,f)

)

σ(Us
s ) ⊂ σ({W s

s }s′≺s, {W sf
(s′,f′)}(s′,f′)≺(s,f)

)
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Conclusion and outlooks

on the multi-months procurement problem

• Given a value function Vs and a state x s
s− ,

computing Vs−(x s
s−) ≈ solving a monthly problem

• Two time scales decomposition assumes

month-wise independence of the noises

↪→ crude oil prices inside a month are time-dependent

• Various methods can be used to solve the problem

inside each month

↪→ adapt policies from Part I to approximate value functions
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The end

• We built a model for the crude oil procurement

that models uncertainties and delivery delays

• Multi-scenarios-based policies showed promising results

on the monthly procurement problem

• We developed a framework

to decompose two time scales problems at the slow scale,

without independent fast scale noises

• Next: Adapt the policies from Part I

to the multi-months problem
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