Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Calibration	of the Libor Ma	arket Model	with Jacobi stochastic	C
	vol	atility factor		
	Insu	irance practices		

Sophian MEHALLA^{1,2} Joint work with P.-E. Arrouy², A. Boumezoued² & B. Lapeyre¹

¹École Nationale des Ponts et Chausées (CERMICS) & ²Milliman Paris

9th General AMaMeF Conference, Paris

June 11th, 2019

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Table of contents				

- Regulatory framework: Solvency II
 - Philosophy
 - Challenges
- Interest-rates modelling
 The Libor Market Model
- 3 Calibration method
 - Approximating the dynamic
 - Gram-Charlier density approximation
- 4 Jacobi dynamic for volatility component
 - A new model
 - An approximation of the standard model

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Table of contents				

1 Regulatory framework: Solvency II

- 2 Interest-rates modelling
- 3 Calibration method
- 4 Jacobi dynamic for volatility component

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
00000	00000	000000	0000000	
Regulatory framew	vork (1/2)			

European regulatory framework: Solvency II (2016)

Figure: Solvency II regulatory framework

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Philosophy				
Regulatory frame	work (1/2)			

Figure: Solvency II regulatory framework

 \rightarrow Focus on the computation of the SCR.

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
000000				
Regulatory frame	work (2/2)			

Insurers are exposed to a lot of risks: behaviour of policyholders, mortality rates, (natural) disasters, operational risks, financial risk, ...

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
00000				
Regulatory frame	work (2/2)			

- Insurers are exposed to a lot of risks: behaviour of policyholders, mortality rates, (natural) disasters, operational risks, financial risk, ...
- Solvency Capital Requirement (SCR) is a "value" of all these risks.

Figure: Structure of the standard formula

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
000000				
Regulatory frame	work (2/2)			

Among all these risks: the financial risk (rise/fall of interest rates, fall of some stocks, etc.).

Figure: Structure of the standard formula

 \rightarrow Major part of insurers' portfolio are composed of *bonds* (\approx 80%) and other derivatives on *interest-rates*.

Sophian Mehalla (CERMICS & Milliman)

Calibration of LMM

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Challenges				
What is required?				

- Models dedicated to interest rates are decisive, some may be complex to handle. They are asked..
 - ..to be Risk-Neutral;
 - ..to be consistent with market data (market-consistency): models have to replicate market prices.
- Models from the bank industry have been chosen.

Why stochastic ve	latility models	2		
00000	00000	000000	0000000	
Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References

Goal: price swaptions (call option on swap rate $S_{T}^{m,n}$)

```
\operatorname{Price}(\sigma^{\operatorname{implied}}; K, T) = \operatorname{Discount} \times \mathbb{E}^{S} \left[ \max(S_{T}^{m,n} - K, \mathbf{0}) \right]
```

 \rightsquigarrow Choice: model the financial driver swap rate using an Ito diffusion. The use of stochastic volatility type models is especially adapted.

Figure: Market data to be replicated

Standard uses: \approx 10 parameters to fit around 300 (swaption) prices.

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Table of contents				

Regulatory framework: Solvency II

- 2 Interest-rates modelling
- 3 Calibration method
- 4 Jacobi dynamic for volatility component

Regulatory framework: Solvency II	Interest-rates modelling •0000	Calibration method	Jacobi dynamic for volatility component	References
Zero-Coupon bone	d			

The LIBOR Market Model focuses on the modelling of observable quantities (following the work of (BGM97) and (Jam97); see (BM07) for an overview of interet-rates modelling). Let T > 0 be a finite time horizon, and let us assume:

- the market information is generated by a *N*-dimensional Brownian motion $(W_t)_{t \leq T}$;
- there exists a Risk-Neutral probability P* (equivalent to the historical one) under which discounted bond prices are martingales.

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Zero-Coupon bond	k			

The LIBOR Market Model focuses on the modelling of observable quantities (following the work of (BGM97) and (Jam97); see (BM07) for an overview of interet-rates modelling). Let T > 0 be a finite time horizon, and let us assume:

- the market information is generated by a *N*-dimensional Brownian motion $(W_t)_{t \leq T}$;
- there exists a Risk-Neutral probability P* (equivalent to the historical one) under which discounted bond prices are martingales.

$$\rightsquigarrow \text{Under } \mathbb{P}^*, \ \frac{dP(t,T)}{P(t,T)} = r_t dt + \sigma(t,T) \cdot dW_t^*$$

with

- $(r_t)_{t \leq T}$ is the risk-free rate;
- $(\sigma(t, T))_{t \leq T}$ is the volatility structure (adapted process);
- the correlation between Zero-Coupon bonds P(t, T) and its volatility structure $\sigma(t, T)$ can be identified.

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Forward rates				

Forwards rates: interest-rate that will prevail over a future period.

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Forward rates				

- Forwards rates: interest-rate that will prevail over a future period.
- Consider a tenor structure $T_0 < T_1 < \cdots < T_K \leq T$. For $k \in [[0, K-1]]$, the forward rate prevailing over the period $[T_k, T_{k+1}]$ is defined by:

$$F_{k}(t) := \frac{1}{\Delta_{k}} \left(\frac{P(t, T_{k})}{P(t, T_{k+1})} - 1 \right), \ t \leq T_{k}, \ \Delta_{k} := T_{k+1} - T_{k}.$$

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Forward rates				

- Forwards rates: interest-rate that will prevail over a future period.
- Consider a tenor structure $T_0 < T_1 < \cdots < T_K \leq T$. For $k \in [[0, K-1]]$, the forward rate prevailing over the period $[T_k, T_{k+1}]$ is defined by:

$$F_{k}(t) := \frac{1}{\Delta_{k}} \left(\frac{P(t, T_{k})}{P(t, T_{k+1})} - 1 \right), \ t \leq T_{k}, \ \Delta_{k} := T_{k+1} - T_{k}.$$

■ Under P*, the dynamic of these is (Ito):

$$dF_{k}(t) = F_{k}(t)\gamma_{k}(t) \cdot \left(dW_{t}^{*} - \sigma(t, T_{k+1})dt\right)$$

where
$$\gamma_k(t) := \frac{1 + \Delta_k F_k(t)}{\Delta_k F_k(t)} (\sigma(t, T_k) - \sigma(t, T_{k+1})).$$

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Shifted forward ra	ites			

■ "Late" market conditions have been such that these rates could be negative: hence the introduction of a *shift* coefficient $\delta \ge 0$. Our new modelling framework (see (JR03)) focuses on the *shifted forward rates*

$$F_k(t) + \delta, t \leq T_k$$

and is such that

$$\mathbb{P}^*\left(\forall t \leq T_k : F_k(t) \geq -\delta\right) = 1.$$

■ Under P*, the dynamic of shifted rates is *assumed* to be:

$$dF_k(t) = (F_k(t) + \delta)\gamma_k(t) \cdot (dW_t^* - \sigma(t, T_{k+1})dt).$$

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
	00000			
Swap rate				

Swap rate: rate of the fixed leg in a swap (exchange) contract that will start at a future date.

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Swap rate				

- Swap rate: rate of the fixed leg in a swap (exchange) contract that will start at a future date.
- Consider two dates $T_m < T_n \le T$. The swap rate prevailing over the period $[T_m, T_n]$ is defined as:

$$S_t^{m,n} := \frac{P(t,T_m) - P(t,T_n)}{B^S(t)}, \ t \leq T_m,$$

with $B^{S}(t) := \sum_{j=m}^{n-1} \Delta_{j} P(t, T_{j+1}).$

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Swap rate				

- Swap rate: rate of the fixed leg in a swap (exchange) contract that will start at a future date.
- Consider two dates $T_m < T_n \le T$. The swap rate prevailing over the period $[T_m, T_n]$ is defined as:

$$S_t^{m,n} := \frac{P(t,T_m) - P(t,T_n)}{B^S(t)}, \ t \leq T_m,$$

with $B^{S}(t) := \sum_{j=m}^{n-1} \Delta_{j} P(t, T_{j+1}).$

For similar reasons, we are lead to model the *shifted swap rate*:

$$(S_t^{m,n}+\delta)_{t\leqslant T_m}.$$

It can be shown that the shifted swap rate expresses as a deterministic function of the shifted forward rates involved during the time interval $[T_m, T_n]$.

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Swap rate				

- Swap rate: rate of the fixed leg in a swap (exchange) contract that will start at a future date.
- Consider two dates $T_m < T_n \le T$. The swap rate prevailing over the period $[T_m, T_n]$ is defined as:

$$S_t^{m,n} := \frac{P(t,T_m) - P(t,T_n)}{B^S(t)}, \ t \leq T_m,$$

with $B^{S}(t) := \sum_{j=m}^{n-1} \Delta_{j} P(t, T_{j+1}).$

For similar reasons, we are lead to model the *shifted swap rate*:

$$(S_t^{m,n}+\delta)_{t\leqslant T_m}$$

- It can be shown that the shifted swap rate expresses as a deterministic function of the shifted forward rates involved during the time interval $[T_m, T_n]$.
- Under ℙ^S, the probability measure associated to the *numéraire* B^S(t), the dynamic of the shifted swap rate is (Ito):

$$d(S_t^{m,n}+\delta) = \sum_{j=m}^{n-1} \frac{\partial(S_t^{m,n}+\delta)}{\partial(F_j(t)+\delta)} (F_j(t)+\delta) \gamma_j(t) \cdot dW_t^S$$

where the quantities $\partial (S_t^{m,n} + \delta) / \partial (F_j(t) + \delta)$ can be analytically computed.

Regulatory framework: Solvency II	Interest-rates modelling 0000●	Calibration method	Jacobi dynamic for volatility component	References
The volatility com	ponent			

One of the most popular choice is

 $\sigma(t,T) = \mathbf{v}(t,T) \times \sqrt{V_t}$

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
	00000			
The volatility com	nonent			

One of the most popular choice is

$$\sigma(t,T) = \mathbf{v}(t,T) \times \sqrt{V_t}$$

with

- $(t,T) \mapsto v(t,T)$ a deterministic function (bounded and piecewise continuous); ■ $(V_t)_{t \leq T}$ a Cox-Ingersoll-Ross process. Its dynamic is usually specified under the
- $(V_t)_{t \leq T}$ a Cox-Ingersoll-Ross process. Its dynamic is usually specified under the Risk-Neutral measure and the dynamic under \mathbb{P}^S is deduced thanks to Girsanov's theorem:

$$dV_t = \kappa(\theta - \xi(t)V_t)dt + \epsilon \sqrt{V_t} dZ_t^S$$

which Feller condition $2\kappa\theta \ge e^2$ ensures to have $\mathbb{P}^*(\forall t \le T : V_t > 0) = 1$ (as long as $V_0 > 0$);

• $t \mapsto \xi(t)$ is a function appearing through the change of measures: it depends on the forward rates $(F_j(t))_{t \leq T_j, j \in \{0, \dots, n-1\}}$.

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Table of contents				

- 1 Regulatory framework: Solvency II
- 2 Interest-rates modelling
- 3 Calibration method
- 4 Jacobi dynamic for volatility component

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Approximating the dynamic				
Calibration of the	model			

The model is, under \mathbb{P}^{S} :

$$\begin{cases} d(S_t^{m,n} + \delta) = \sqrt{V_t} \sum_{j=m}^{n-1} \frac{\partial(S_t^{m,n} + \delta)}{\partial(F_j(t) + \delta)} (F_j(t) + \delta) \eta_j(t) \cdot dW_t^S \\ dV_t = \kappa(\theta - \xi(t)V_t) dt + \epsilon \sqrt{V_t} dZ_t^S \\ (S_0^{m,n} + \delta, V_0) \in \mathbb{R} \times \mathbb{R}_+^* \end{cases}$$

with $\gamma_j(t) = \sqrt{V_t} \times \eta_j(t)$.

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Approximating the dynamic				
Calibration of the	model			

The model is, under \mathbb{P}^{S} :

$$\begin{cases} d(S_t^{m,n} + \delta) = \sqrt{V_t} \sum_{j=m}^{n-1} \frac{\partial(S_t^{m,n} + \delta)}{\partial(F_j(t) + \delta)} (F_j(t) + \delta) \eta_j(t) \cdot dW_t^S \\ dV_t = \kappa(\theta - \xi(t)V_t) dt + \epsilon \sqrt{V_t} dZ_t^S \\ (S_0^{m,n} + \delta, V_0) \in \mathbb{R} \times \mathbb{R}_+^* \end{cases}$$

with $\gamma_j(t) = \sqrt{V_t} \times \eta_j(t)$.

As it stands, the model is too complex to be calibrated: Monte-Carlo simulations are out of the operational scope.

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Approximating the dynamic				
Calibration of the	model			

The model is, under \mathbb{P}^{S} :

$$\begin{cases} d(S_t^{m,n} + \delta) = \sqrt{V_t} \sum_{j=m}^{n-1} \frac{\partial(S_t^{m,n} + \delta)}{\partial(F_j(t) + \delta)} (F_j(t) + \delta) \eta_j(t) \cdot dW_t^S \\ dV_t = \kappa(\theta - \xi(t)V_t) dt + \epsilon \sqrt{V_t} dZ_t^S \\ (S_0^{m,n} + \delta, V_0) \in \mathbb{R} \times \mathbb{R}_+^* \end{cases}$$

with $\gamma_j(t) = \sqrt{V_t} \times \eta_j(t)$.

- As it stands, the model is too complex to be calibrated: Monte-Carlo simulations are out of the operational scope.
- Based on the assumption of low variability of some ratios, these are *freezed* to their initial value.

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Calibration of the	model: <i>freezir</i>	ng technique		

Two ways of approximating the dynamic:

■ the "log-normal" version (Heston type model)

$$\begin{cases} d(S_t^{m,n} + \delta) = \sqrt{V_t}(S_t^{m,n} + \delta) \sum_{j=m}^{n-1} \frac{\partial(S_0^{m,n} + \delta)}{\partial(F_j(0) + \delta)} \frac{F_j(0) + \delta}{S_0^{m,n} + \delta} \eta_j(t) \cdot dW_t^S \\ dV_t = \kappa(\theta - \xi^0(t) V_t) dt + \epsilon \sqrt{V_t} dZ_t^S \\ (S_0^{m,n} + \delta, V_0) \in \mathbb{R}_+ \times \mathbb{R}_+^* \end{cases}$$

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Calibration of the	model: freezir	ng technique		

- Two ways of approximating the dynamic:
 - the "log-normal" version (Heston type model)

$$\begin{cases} d(S_t^{m,n} + \delta) = \sqrt{V_t}(S_t^{m,n} + \delta) \sum_{j=m}^{n-1} \frac{\partial(S_0^{m,n} + \delta)}{\partial(F_j(0) + \delta)} \frac{F_j(0) + \delta}{S_0^{m,n} + \delta} \eta_j(t) \cdot dW_t^S \\ dV_t = \kappa(\theta - \xi^0(t) V_t) dt + \epsilon \sqrt{V_t} dZ_t^S \\ (S_0^{m,n} + \delta, V_0) \in \mathbb{R}_+ \times \mathbb{R}_+^* \end{cases}$$

■ the "normal" version (Bachelier - with vol. sto. - type model)

$$\begin{cases} d(S_t^{m,n} + \delta) = \sqrt{V_t} \sum_{j=m}^{n-1} \frac{\partial(S_0^{m,n} + \delta)}{\partial(F_j(0) + \delta)} (F_j(0) + \delta) \eta_j(t) \cdot dW_t^S \\ dV_t = \kappa (\theta - \xi^0(t) V_t) dt + \epsilon \sqrt{V_t} dZ_t^S \\ (S_0^{m,n} + \delta, V_0) \in \mathbb{R} \times \mathbb{R}_+^* \end{cases}$$
(1)

with $t \rightarrow \xi^{0}(t)$ a deterministic (bounded and piecewise continuous) function.

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Calibration of the	model: freezir	ng technique		

- Two ways of approximating the dynamic:
 - the "log-normal" version (Heston type model)

$$\begin{cases} d(S_t^{m,n} + \delta) = \sqrt{V_t}(S_t^{m,n} + \delta) \sum_{j=m}^{n-1} \frac{\partial(S_0^{m,n} + \delta)}{\partial(F_j(0) + \delta)} \frac{F_j(0) + \delta}{S_0^{m,n} + \delta} \eta_j(t) \cdot dW_t^S \\ dV_t = \kappa(\theta - \xi^0(t) V_t) dt + \epsilon \sqrt{V_t} dZ_t^S \\ (S_0^{m,n} + \delta, V_0) \in \mathbb{R}_+ \times \mathbb{R}_+^* \end{cases}$$

■ the "normal" version (Bachelier - with vol. sto. - type model)

$$\begin{cases} d(S_t^{m,n} + \delta) = \sqrt{V_t} \sum_{j=m}^{n-1} \frac{\partial(S_0^{m,n} + \delta)}{\partial(F_j(0) + \delta)} (F_j(0) + \delta) \eta_j(t) \cdot dW_t^S \\ dV_t = \kappa(\theta - \xi^0(t) V_t) dt + \epsilon \sqrt{V_t} dZ_t^S \\ (S_0^{m,n} + \delta, V_0) \in \mathbb{R} \times \mathbb{R}_+^* \end{cases}$$
(1)

with $t \rightarrow \xi^0(t)$ a deterministic (bounded and piecewise continuous) function.

The second model is more suited under low interest-rates regime: we will focus on this version of the model in the following.

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Calibration using	Gram-Charlier	r expansion		

To calibrate (1), we chose to perform a Gram-Charlier expansion, following the work of (ABBD17), on the unkown density, f, of $S_{T_m}^{m,n}$: the model is calibrated thanks to approximating prices.

$$\mathsf{Price} = \int_{\mathbb{R}} (s - K)_+ f(s) ds \approx \int_{\mathbb{R}} (s - K)_+ f^{(N)}(s) ds =: \mathsf{Price}(N)$$

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Calibration using	Gram-Charlier	r expansion		

To calibrate (1), we chose to perform a Gram-Charlier expansion, following the work of (ABBD17), on the unkown density, f, of $S_{T_m}^{m,n}$: the model is calibrated thanks to approximating prices.

$$\mathsf{Price} = \int_{\mathbb{R}} (s - K)_+ f(s) ds \approx \int_{\mathbb{R}} (s - K)_+ f^{(N)}(s) ds =: \mathsf{Price}(N)$$

Is this approximation accurate?

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Theory of Gram-Charlier expansions				

General idea: the unknown density *f* is 'projected' onto a Gaussian distribution *g* (in the following, say *g* is the standard normal density).

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Theory of Gram-C	harlier expans	sions		

- General idea: the unknown density *f* is 'projected' onto a Gaussian distribution *g* (in the following, say *g* is the standard normal density).
- $L^2(g) = \left\{ h \text{ measurable: } \int_{\mathbb{R}} h(x)^2 g(x) dx < \infty \right\}$ is a Hilbert space.

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Theory of Gram-C	Charlier expan	sions		

- General idea: the unknown density *f* is 'projected' onto a Gaussian distribution *g* (in the following, say *g* is the standard normal density).
- $L^2(g) = \left\{ h \text{ measurable: } \int_{\mathbb{R}} h(x)^2 g(x) dx < \infty \right\}$ is a Hilbert space.
- There exists an orthonormal basis of polynomials $(H_n)_{n \in \mathbb{N}}$ of $L^2(g)$ (Hermite polynomials) that are analytically known.

Gram-Charlier density approximation						
		000000				
Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References		

Theory of Gram-Charlier expansions

- General idea: the unknown density *f* is 'projected' onto a Gaussian distribution *g* (in the following, say *g* is the standard normal density).
- $L^2(g) = \left\{ h \text{ measurable: } \int_{\mathbb{R}} h(x)^2 g(x) dx < \infty \right\}$ is a Hilbert space.
- There exists an orthonormal basis of polynomials $(H_n)_{n \in \mathbb{N}}$ of $L^2(g)$ (Hermite polynomials) that are analytically known.

If
$$f/g \in L^2(g)$$
,

$$\frac{f^{(N)}}{g} \xrightarrow{L^2(g)}{N \to \infty} \frac{f}{g},$$

with the approximating densities $f^{(N)}(x) := g(x) \times \sum_{i=0}^{N} c_i H_i(x)$.

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
		000000		
Gram-Charlier density approximation				
		-!		

Theory of Gram-Charlier expansions

- General idea: the unknown density *f* is 'projected' onto a Gaussian distribution *g* (in the following, say *g* is the standard normal density).
- $L^2(g) = \left\{ h \text{ measurable: } \int_{\mathbb{R}} h(x)^2 g(x) dx < \infty \right\}$ is a Hilbert space.
- There exists an orthonormal basis of polynomials $(H_n)_{n \in \mathbb{N}}$ of $L^2(g)$ (Hermite polynomials) that are analytically known.
- If $f/g \in L^2(g)$,

$$\frac{f^{(N)}}{g} \xrightarrow{L^2(g)}{N \to \infty} \frac{f}{g},$$

with the approximating densities $f^{(N)}(x) := g(x) \times \sum_{i=0}^{N} c_i H_i(x)$.

The coefficients *c_i* are linear combinations of the moments of *f*.

•
$$f/g \in L^2(g)$$
 means $\int_{\mathbb{R}} f(x)^2 e^{\frac{x^2}{2}} dx < \infty$

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Gram-Charlier density approximation				
Gram-Charlier and	d stochastic v	olatility mode	els (1/2)	

 $X := \sqrt{V} \times G$

with $G \sim N(0,\sigma^2)$ and $V \sim \chi^2(d)$, G and V being independent.

Figure: Gram-Charlier expansion of the density of X up to order 10 - $\sigma^2 = 0.25$ & d = 4

Unbounded volatility processes: Gram-Charlier expansion unlikely to converge

Calibration of LMM

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Gram-Charlier and	l stochastic vo	latility model	s (2/2)	

$$X^{(M)} := \sqrt{\min(V, M)} \times G$$

Figure: Gram-Charlier expansion of the density of $X^{(M)}$ up to order 30 - M = 4

Requirement: $\sigma^2 M < 2$

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Table of contents				

- 1 Regulatory framework: Solvency II
- 2 Interest-rates modelling
- 3 Calibration method
- 4 Jacobi dynamic for volatility component

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Proposed dynami	c (1/2)			

- Modelling assumption: the tails of (marginal) distribution of the volatility process in (1) are thin.
- We bound the volatility process to perform Gram-Charlier expansion, while preserving (we hope!) a good approximation of the distribution.

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Proposed dynami	c (1/2)			

- Modelling assumption: the tails of (marginal) distribution of the volatility process in (1) are thin.
- We bound the volatility process to perform Gram-Charlier expansion, while preserving (we hope!) a good approximation of the distribution.
- Let us define a bounding function

$$Q(v) = \frac{(v - v_{\min})(v_{\max} - v)}{(\sqrt{v_{\max}} - \sqrt{v_{\min}})^2}$$

is such that $Q(v) \in [v_{\min}, v_{\max}]$ for all $v \in [v_{\min}, v_{\max}]$. Note that $Q(v) \rightarrow v$ as $(v_{\min}, v_{\max}) \rightarrow (0, \infty)$.

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Proposed dynami	ic (2/2)			

Based on the work (AFP18), we introduce the Jacobi dynamic for the stochastic volatility component:

$$\begin{cases} d(S_t^{m,n} + \delta) = \rho(t)\sqrt{Q(V_t)} \|\lambda(t)\| \times dZ_t^S + \sqrt{V_t - \rho(t)^2 Q(V_t)}\lambda(t) \cdot dZ_t^{S,\perp} \\ dV_t = \kappa(\theta - \xi^0(t)V_t)dt + \epsilon\sqrt{Q(V_t)}dZ_t^S \\ (S_0^{m,n} + \delta, V_0) \in \mathbb{R} \times]v_{\min}, v_{\max}[\end{cases}$$

$$(2)$$

with

$$\lambda(t) := \sum_{j=m}^{n-1} \frac{\partial (S^{m,n}(0) + \delta)}{\partial (F_j(0) + \delta)} (F_j(0) + \delta) \eta_j(t);$$

 ρ(t) represents the correlation structure between the swap rate and its stochastic volatility.

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Some properties				

Roughly

$$d(S_t^{m,n}+\delta) \approx \sqrt{V_t} \lambda(t) \cdot dW_t^S$$

While (1) is an affine model, (2) is a polynomial model which allow to compute marginal moments of S^{m,n} (see (CKRT12) or (FL16) for more details on the polynomial processes).

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Some properties				

Roughly

$$d(S_t^{m,n}+\delta) \approx \sqrt{V_t}\lambda(t) \cdot dW_t^S$$

While (1) is an affine model, (2) is a polynomial model which allow to compute marginal moments of S^{m,n} (see (CKRT12) or (FL16) for more details on the polynomial processes).

■ If Feller's condition $\frac{\epsilon^2 (v_{max} - v_{min})}{(\sqrt{v_{max}} - \sqrt{v_{min}})^2} \leq 2\kappa \min(v_{max} - \theta, \theta - v_{min})$ holds, $\mathbb{P}^*(\forall t: V_t \in]v_{\min}, v_{\max}[) = 1.$

Then, Gram-Charlier expansion can be performed on the unknown density of $S_T^{m,n}$, as long as:

$$v_{max} \times T \times \max_{t \leqslant T} \|\lambda(t)\|^2 < 2$$

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Convergence towa	rds the referer	nce dynamic	(1/2)	

■ Weak convergence of solution to (2) towards solution of (1) as $(v_{\min}, v_{\max}) \rightarrow (0, \infty)$ is shown in (AFP18).

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Convergence towards the reference dynamic (1/2)				

- Weak convergence of solution to (2) towards solution of (1) as $(v_{\min}, v_{\max}) \rightarrow (0, \infty)$ is shown in (AFP18).
- We have more:

Theorem

Fix $v_{\min} = 0$. There exists finite constants C, K such that

$$\sup_{0 \leqslant t \leqslant T} \mathbb{E}^* \left[|V_t^{Jacobi} - V_t| \right] \leqslant C/\log(v_{max}),$$

and

$$\mathbb{E}^*\left[\sup_{0\leqslant t\leqslant T}|V_t^{Jacobi}-V_t|\right]\leqslant K/\sqrt{\log(v_{max})}.$$

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Convergence towa	rds the referer	nce dynamic	(2/2)	

Figure: $\mathbb{E}\left[\sup_{0 \le t \le 5} |V_t^{\text{Jacobi}} - V_t|\right]$ obtained by Monte-Carlo simulations

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References		
Convergence towards the reference dynamic (2/2)						

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References		
Conclusion & Perspectives						

General theoretical framework allowing to perform a convergent Gram-Charlier expansion..

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Conclusion & Per	spectives			

- General theoretical framework allowing to perform a convergent Gram-Charlier expansion..
- .. and thus pricing at any given precision (from a theoretical point of view).

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Conclusion & Per	spectives			

- - General theoretical framework allowing to perform a convergent Gram-Charlier expansion..
 - ... and thus pricing at any given precision (from a theoretical point of view).
 - Pricing by 'semi' closed-form expressions that are computationally efficient (2× faster compared to 'standard' method).

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Conclusion & Per	spectives			

- General theoretical framework allowing to perform a convergent Gram-Charlier expansion..
- ... and thus pricing at any given precision (from a theoretical point of view).
- Pricing by 'semi' closed-form expressions that are computationally efficient (2× faster compared to 'standard' method).
- Analysis of the error as a function of (*N*, *v*_{max})

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
Conclusion & Per	spectives			

- General theoretical framework allowing to perform a convergent Gram-Charlier expansion..
- ... and thus pricing at any given precision (from a theoretical point of view).
- Pricing by 'semi' closed-form expressions that are computationally efficient (2× faster compared to 'standard' method).
- Analysis of the error as a function of (*N*, *v*_{max})
- Impact on the SCR?

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References
References				

- [ABBD17] P.-E. Arrouy, and P. Bonnefoy, A. Boumezoued, L. Devineau, *Fast calibration of the Libor Market Model with Stochastic Volatility and Displaced Diffusion* (2017).
 - [AFP18] D. Ackerer, D. Filipović and S. Pulido, *The Jacobi stochastic volatility model* (2018).
- [CKRT12] C. Cuchiero, M. Keller-Ressel and J. Teichmann, *Polynomial processes and their applications to mathematical finance* (2012).
 - [FL16] D. Filipovic and M. Larsson, *Polynomial Diffusions and Applications in Finance* (2016).
 - [BM07] D. Brigo and F. Mercurio, Interest rate models theory and practice: with smile, inflation and credit (2007).
 - [JR03] M. Joshi and R. Rebonato, A stochastic-volatility, displaced-diffusion extension of the LIBOR market model (2003).
 - [Jam97] F. Jamshidian, LIBOR and swap market models and measures (1997).
 - [BGM97] A. Brace, D. Gatarek and M. Musiela, *The market model of interest rate dynamics* (1997).

Regulatory framework: Solvency II	Interest-rates modelling	Calibration method	Jacobi dynamic for volatility component	References		
End of presentation						

Thank you!

(sophian.mehalla@enpc.fr)

