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Regulatory framework: Solvency Il
[ Jele]e]

ework (1/

ulatory fr.

European regulatory framework: Solvency Il (2016)

Solvency Il

Pillar I: Quantitative Pillar II: Qualitative Pillar lll: Reporting and

Requirements Requirements. Disclosure

Calculation of required Own Risk and Solvency peaditemet

Solvency Capital (SCR, Assessment (ORSA) Report to Supervisor

HER) Governance System (RSR)

Solvency 2 Balance Solvency and Financial

Sheet Condition Report (SFCR)
Quantitative Reporting
Templates (QRTs)

Figure: Solvency Il regulatory framework
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[o] le]e}
ulatory f work (1/2)

Solvency Il

Pillar . Quantitative Pillar II: Qualitative Pillar lli: Reporting and

Requirements Requirements Disclosure

Calculation of required Own Risk and Solvency bigplhards

Solvency Capital (SCR, Assessment (ORSA) Report to Supervisor

MCR) Governance System )

Solvency 2 Balance Solvency and Financial

Sheet Condition Report (SFCR)
Quantitative Reporting
Templates (QRTS)

Figure: Solvency Il regulatory framework

— Focus on the computation of the SCR.
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Regulatory framework: Solvency Il
[e]e] le]

Regulatory framework (2/2)

Insurers are exposed to a lot of risks: behaviour of policyholders, mortality rates,
(natural) disasters, operational risks, financial risk, . ..
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Regulatory framework: Solvency Il
[e]e] le]

ulatory fr.

ework (2/2)

Insurers are exposed to a lot of risks: behaviour of policyholders, mortality rates,
(natural) disasters, operational risks, financial risk, . ..

(SCR) is a "value" of all these risks.
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Regulatory framework: Solvency Il
[e]e]e] ]

Among all these risks: the financial risk (rise/fall of interest rates, fall of some
stocks, etc.).
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Figure: Structure of the standard formula

— Major part of insurers’ portfolio are composed of bonds (~ 80%) and other
derivatives on interest-rates.
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L 1)
What is required?

Models dedicated to interest rates are decisive, some may be complex to
handle. They are asked..
m ..to be Risk-Neutral;

m ..to be consistent with market data (market-consistency): models have to replicate
market prices.

Models from the bank industry have been chosen.
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oe
Why stochastic volatility models?

Goal: price swaptions (call option on swap rate 8’77."”)

~» Choice: model the financial driver swap rate using an lto diffusion.
The use of stochastic volatility type models is especially adapted.

ATM Swaptions volatilities

7

Figure: Market data to be replicated

Standard uses: ~ 10 parameters to fit around 300 (swaption) prices. A\ IE
AN
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90000
Zero-Coupon bond

The LIBOR Market Model focuses on the modelling of observable quantities (following
the work of (BGM97) and (Jam97); see (BMO7) for an overview of interet-rates
modelling). Let T > 0 be a finite time horizon, and let us assume:

the market information is generated by a N-dimensional Brownian motion
W<

there exists a Risk-Neutral probability P* (equivalent to the historical one) under
which discounted bond prices are martingales.
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90000
Zero-Coupon bond

The LIBOR Market Model focuses on the modelling of observable quantities (following
the work of (BGM97) and (Jam97); see (BMO7) for an overview of interet-rates
modelling). Let T > 0 be a finite time horizon, and let us assume:

the market information is generated by a N-dimensional Brownian motion
W<

there exists a Risk-Neutral probability P* (equivalent to the historical one) under
which discounted bond prices are martingales.
dP(t,T)

—~ * T\ ) . *
Under P*, AL T) redt+o(t,T)-dW;

with
B (1)< is the risk-free rate;
m (0(t,T))<7 is the volatility structure (adapted process);
m the correlation between Zero-Coupon bonds P(t, T) and its volatility structure o(t, T)
can be identified.
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(o] lelele]
rward rates

: interest-rate that will prevail over a future period.

A4

Sophian Mehalla (CERMICS & Milliman) June 11972019 12/32



(o] lelele]
Forward rates

: interest-rate that will prevail over a future period.

Consider a tenor structure To < Ty <--- < T < T. For ke [0,K —1], the
forward rate prevailing over the period [Ty, Ty 1] is defined by:

1 ( P(t, Tk)

PO = 5 P Ty

1), < Ty, Agi=Typ1— Tk
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(o] lelele]
Forward rates

: interest-rate that will prevail over a future period.

Consider a tenor structure To < Ty <--- < T < T. For ke [0,K —1], the
forward rate prevailing over the period [Ty, Ty 1] is defined by:

1 ( P(t, Tk)

PO = 5 P Ty

1), t< Tk' Ay = Tk+1 *Tk~

Under P*, the dynamic of these is (Ito):

dFk(t) = F(t)yk (1) - (AW} —a(t, Tgyq)dlt)

where vy (t) := % (o(t, Tg) = (t, Ty y1))-
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[e]e] Tele]
Shifted forward rates

"Late" market conditions have been such that these rates could be negative:
hence the introduction of a shift coefficient 5§ > 0. Our new modelling framework
(see (JR03)) focuses on the shifted forward rates

Fie(t)+06, t< Ty

and is such that
P (Ve < Th: Fie() > —0) = 1.

Under P*, the dynamic of shifted rates is assumed to be:

dF(t) = (Fx(t) +6)yk(t)- (th* —a(t, Tgyq)dt).
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Interest-rates modelling
[e]e]e] o]
Swap rate

: rate of the fixed leg in a swap (exchange) contract that will start at a
future date.
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Interest-rates modelling
[e]e]e] o]
Swap rate

: rate of the fixed leg in a swap (exchange) contract that will start at a
future date.
Consider two dates Ty < Tp < T. The swap rate prevailing over the period
[Tm, Tn] is defined as:

, < Tm,

with BS(f) :=Z]f’=_n17AjP(t, Tjit1)-
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Interest-rates modelling
[e]e]e] o]

: rate of the fixed leg in a swap (exchange) contract that will start at a
future date.

Consider two dates Ty < Tp < T. The swap rate prevailing over the period
[Tm, Tn] is defined as:

, < Tm,

: —1
with BS(t) := z]."zmA,P(t, Tit1):
For similar reasons, we are lead to model the shifted swap rate:
m,n
(St + 6) t<Tm"

It can be shown that the shifted swap rate expresses as a deterministic function of
the shifted forward rates involved during the time interval [ Tm, Tn].
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Interest-rates modelling
[e]e]e] o]
Swap rate

: rate of the fixed leg in a swap (exchange) contract that will start at a
future date.
Consider two dates Ty < Tp < T. The swap rate prevailing over the period
[Tm, Tn] is defined as:

, 1< T,

: —1
with BS(t) := z]."zmA,P(t, Tit1):
For similar reasons, we are lead to model the shifted swap rate:

(S;W'N +6) t<Tm"

It can be shown that the shifted swap rate expresses as a deterministic function of
the shifted forward rates involved during the time interval [ Tm, Tn].

Under PS, the probability measure associated to the numéraire Bs(t), the
dynamic of the shifted swap rate is (Ito):

n—1 mn
d(s""+o Z 1 )(ﬁ(t)+6)y,-(t>~dwf
a(F(t) +96)

where the quantities a(SP” +0)/0(Fj(t) + 6) can be analytically computed. IE
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The volatility component

One of the most popular choice is
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[e]e]e]e] ]
The volatility component

One of the most popular choice is

with
m (4, T)—> v(t,T) adeterministic function (bounded and piecewise continuous);
m (V4)i<1 @ Cox-Ingersoll-Ross process. Its dynamic is usually specified under the

Risk-Neutral measure and the dynamic under PS is deduced thanks to Girsanov's
theorem:

aVy =x(0—&(H) Vy)dt +er/VydZP

which Feller condition 2x6 = ¢2 ensures to have p* (Vtg T:Vi> 0) =1 (aslong as
VO > 0),
B t—— &(t) is a function appearing through the change of measures: it depends on the forward
rates (Fj(’))tg‘l'j,je{o,m,nfﬂ'
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[ Jo]
Calibration of the model

The model is, under PS:

n— 1as’"” 5
d(S"+6) = Z F(OED) hl ) F()+5)n,() aw®

dVy =x(0—E(H)Vy)dt+er/ ,dZtS
(85" +6,Vp) eRx R

with y; () =/ Vg x1;(t).
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[ Jo]
Calibration of the model

The model is, under PS:
n—1p s’"”+6)
d(S{""+6) = Z FE e IO+ WS
dVy =x(0—E(H) V) dt+e\/ ,dZtS
(Sg""+8,Vp) eRx R¥
with Yj(f):'\/ Vt><1]j(t).

As it stands, the model is too complex to be calibrated: Monte-Carlo simulations
are out of the operational scope.
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Calibration method
o0

Calibration of the model

The model is, under PS:

n—1p s’"”+5)
d(S"+6) = Z F(OED) F( )+8)nj(t)- WS
dVy =x(0—E(H) V) dt+e\/ ,dZtS
(Sg""+8,Vp) eRx R¥

with y; () =/ Vg x1;(t).

As it stands, the model is too complex to be calibrated: Monte-Carlo simulations
are out of the operational scope.

Based on the assumption of low variability of some ratios, these are freezed to
their initial value.
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o] J
Calibration of the model: freezing technique

Two ways of approximating the dynamic:
= the "log-normal” version (Heston type model)

n—1

d(SP"+6) =/, nj(t)-dw®
j=m

dVy=x(6— Vy)dt+ey/VedZ

(S5 +6,Vp) eRy xR¥
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o] J
Calibration of the model: freezing technique

Two ways of approximating the dynamic:
= the "log-normal” version (Heston type model)

n—1

d(SP"+6) =/, > nj(t)-dw®
j=m
dVy=x(6— Vy)dt+ey/VedZ

(S5 +6,Vp) eRy xR¥

m the "normal" version (Bachelier - with vol. sto. - type model)

n—1
AP+ =V Y. nj(t)-dw®

=m M)
dVy=x(0— Vp)dt +ey/VedZS

(S5 +6, Vo) eR x R

with t — €°(t) a deterministic (bounded and piecewise continuous) function.
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o] J
Calibration of the model: freezing technique

Two ways of approximating the dynamic:
= the "log-normal” version (Heston type model)

n—1
d(SP"+6) =/, > nj(t)-dw®
j=m
dVy=x(6— Vy)dt+ey/VedZ
(S +6,Vp) eRy x RE

T
m the "normal" version (Bachelier - with vol. sto. - type model)

n—1

AP+ =V Y. nj(t)-dw®
=m M)

dVy=x(0— Vp)dt +ey/VedZS

(S5 +6, Vo) eR x R

with t — €°(t) a deterministic (bounded and piecewise continuous) function.

The second model is more suited under low interest-rates regime: we will focus on
this version of the model in the following.

ﬂﬂ E
AW
Sophian Mehalla (CERMICS & Milliman)
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Calibration method
@000

Calibration using Gram-Charlier expansion

To calibrate (1), we chose to perform a Gram-Charlier expansion, following the
work of (ABBD17), on the unkown density, , of s%”: the model is calibrated
thanks to approximating prices.

Price=f (s—K).M(s)dszJ. (s—K)+ (s)ds =: Price(N)
R R

A4

Sophian Mehalla (CERMICS & Milliman) June 11972019 19/32



Calibration method
@000

Calibration using Gram-Charlier expansion

To calibrate (1), we chose to perform a Gram-Charlier expansion, following the
work of (ABBD17), on the unkown density, , of s%”: the model is calibrated
thanks to approximating prices.

Price=f (s—K).M(s)dszJ. (s—K)+ (s)ds =: Price(N)
R R

Is this approximation accurate?
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Calibration method
0000

Theory of Gram-Charlier expansions

General idea: the unknown density f is ’projected’ onto a Gaussian distribution g
(in the following, say g is the standard normal density).
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Calibration method
0000

Theory of Gram-Charlier expansions

General idea: the unknown density f is ’projected’ onto a Gaussian distribution g
(in the following, say g is the standard normal density).

L2(g) = {h measurable: {p h(x)2g(x)dx < oo} is a Hilbert space.
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Calibration method
0000

Theory of Gram-Charlier expansions

General idea: the unknown density f is ’projected’ onto a Gaussian distribution g
(in the following, say g is the standard normal density).

L2(g) = {h measurable: {p h(x)2g(x)dx < oo} is a Hilbert space.

There exists an orthonormal basis of polynomials (Hn)pen of L2(g) (Hermite
polynomials) that are analytically known.
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Calibration method
0000

Theory of Gram-Charlier expansions

General idea: the unknown density f is ’projected’ onto a Gaussian distribution g
(in the following, say g is the standard normal density).

L2(g) = {h measurable: {p h(x)2g(x)dx < oo} is a Hilbert space.

There exists an orthonormal basis of polynomials (Hn)pen of L2(g) (Hermite
polynomials) that are analytically known.

If f/ge L2(g),

f(N) 29y f
g N-w g

with the approximating densities f(N) (x):=g(x) x Z;V:O Hi(x).
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Calibration method
0000

Theory of Gram-Charlier expansions

General idea: the unknown density f is ’projected’ onto a Gaussian distribution g
(in the following, say g is the standard normal density).

L2(g) = {h measurable: {p h(x)2g(x)dx < oo} is a Hilbert space.

There exists an orthonormal basis of polynomials (Hn)pen of L2(g) (Hermite
polynomials) that are analytically known.

It f/ge L2(g),
f(N) 29y f

g Now g’
with the approximating densities f(N) (x):=g(x) x Z;V:O Hi(x).
The coefficients c; are
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Calibration method
[e]e] Je)

arlier and stochastic volatility models (1/

X:=VVxG
with G~ N(0,02) and V ~ y2(d), Gand V being

Gram—Charlier expansion

-
Ll order 2

Order 4

————— Order 6
w | Order 8
2 o
g | Order 10
T
o o
=
< | SANDE
S = )
b=}
p=i
T

Figure: Gram-Charlier expansion of the density of X up to order 10 - 02 =025&d=4
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Calibration method
[e]e]e] )

Gram-Charlier and stochastic volatility models (2/2)

XM).— .\ Jmin(V,M) x G

Gram—Charlier expansion (bounded vol.)

Target

Order 2
Order 4
Order 6
Order &
Order 10
Order 14
Order 20

Density

Order 24
Order 30

Figure: Gram-Charlier expansion of the density of X(M) up to order 30 - M = 4

. . 2 2
Requirement: M < 2 A2 IE
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Jacobi dynamic for volatility component
000

Proposed dynamic (1/2)

Modelling assumption: the tails of (marginal) distribution of the volatility process in
(1) are thin.

We bound the volatility process to perform Gram-Charlier expansion, while
preserving (we hope!) a good approximation of the distribution.
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Jacobi dynamic for volatility component
000

Proposed dynamic (1/2)

Modelling assumption: the tails of (marginal) distribution of the volatility process in
(1) are thin.

We bound the volatility process to perform Gram-Charlier expansion, while
preserving (we hope!) a good approximation of the distribution.

Let us define a bounding function

_ (V= Vimin) (Vmax — V)
(v/Vmax — +/ Vmin)2

is such that Q(V) € [Vimin, Vmax] for all v € [Vihin, Vmax]. Note that Q(v) — v as
(Ymin» Ymax) — (0,00).

Q(v)
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Jacobi dynamic for volatility component
[e] o}

Proposed dynamic (2/2)

Based on the work (AFP18), we introduce the Jacobi dynamic for the stochastic
volatility component:

d(S+8) = p(t)y/ O VA x dZ8 41/ Vi = p(2 0 Vo A() - 0ZS*
aVs =x(0 - (D) Vy)dt+ey/ 0V, dZS @)
(Sg"" +8, V) € Rx ] Vimin, Vmax|

with

—1 2(8™"(0)+6
=AW= S (F0)+ ) (0;

m p(t) represents the correlation structure between the swap rate and its stochastic
volatility.
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[ele] ]
Some properties

Roughly
d(S" +6)~+/VeA(t) - WS

While (1) is an affine model, (2) is a model which allow to compute
marginal moments of S™7 (see (CKRT12) or (FL16) for more details on the

polynomial processes).
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[ele] ]
Some properties

Roughly
d(S" +6)~+/VeA(t) - WS

While (1) is an affine model, (2) is a model which allow to compute
marginal moments of S™7 (see (CKRT12) or (FL16) for more details on the
polynomial processes).

If Feller's condition 2 (Vmax—Vimin) < 2xmin (Vmax — 6,0 — Vpyjn) holds,

(v/Vimax —~/Vmin)2
P* (Vl‘: Vi G]Vmin!VmBXD =1

Then, Gram-Charlier expansion can be performed on the unknown density of
S™M as long as:

v x T x AD2 <2
'max fljnsa_;SH @]
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Jacobi dynamic for volatility component
000

Convergence towards the reference dynamic (1/2)

Weak convergence of solution to (2) towards solution of (1) as
(Vmin» Vmax) — (0,00) is shown in (AFP18).
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Jacobi dynamic for volatility component
000

Convergence towards the reference dynamic (1/2)

Weak convergence of solution to (2) towards solution of (1) as
(Vmin» Vmax) — (0,00) is shown in (AFP18).

We have more:

Fix Vmin = 0. There exists finite constants C, K such that

sup E¥ [| el v,|] < C/log (Vmax),
0<t<T

and

E* [ sup |VtJaCOb’— Vt|] < K/4/log (Vmax)-
0<t<T

>N O
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Jacobi dynamic for volatility component
(o] Je]

Convergence towards the r

0.04
I

003
I

0.02
I

001
I

000
I

T T T T T
00 0s 10 15 20 25

Sart(Log(Vmax))

Figure: E [sup0<t<5 \V;JaCObi - Vt\] obtained by Monte-Carlo simulations
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Jacobi dynamic for volatility component
ooe

Convergence towards the r

o ——  Theoretical bound
\ --e--- MC estimation
= N, —— Ch-

T T T T T
00 0s 10 15 20 25

Sart(Log(Vmax))

Figure: E[sup0s[<5 \V;JaCObi - Vt|] and theoretical bound
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[ J
Conclusion & Perspectives

General theoretical framework allowing to perform a convergent Gram-Charlier
expansion..
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General theoretical framework allowing to perform a convergent Gram-Charlier
expansion..

.. and thus pricing at any given precision (from a theoretical point of view).

Pricing by 'semi’ closed-form expressions that are computationally efficient (2 x
faster compared to 'standard’ method).

Analysis of the error as a function of (N, Vmax)
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[ J
Conclusion & Perspectives

General theoretical framework allowing to perform a convergent Gram-Charlier
expansion..

.. and thus pricing at any given precision (from a theoretical point of view).

Pricing by 'semi’ closed-form expressions that are computationally efficient (2 x
faster compared to 'standard’ method).

Analysis of the error as a function of (N, Vmax)
Impact on the SCR?
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