
Regulatory framework: Solvency II Interest-rates modelling Calibration method Jacobi dynamic for volatility component References

Calibration of the Libor Market Model with Jacobi stochastic
volatility factor
Insurance practices

Sophian MEHALLA1,2

Joint work with P.-E. Arrouy2, A. Boumezoued2 & B. Lapeyre1

1École Nationale des Ponts et Chausées (CERMICS)
& 2Milliman Paris

9th General AMaMeF Conference, Paris

June 11th, 2019

Sophian Mehalla (CERMICS & Milliman) Calibration of LMM+ June 11th , 2019 1 / 32



Regulatory framework: Solvency II Interest-rates modelling Calibration method Jacobi dynamic for volatility component References

Table of contents

1 Regulatory framework: Solvency II
Philosophy
Challenges

2 Interest-rates modelling
The Libor Market Model

3 Calibration method
Approximating the dynamic
Gram-Charlier density approximation

4 Jacobi dynamic for volatility component
A new model
An approximation of the standard model

Sophian Mehalla (CERMICS & Milliman) Calibration of LMM+ June 11th , 2019 2 / 32



Regulatory framework: Solvency II Interest-rates modelling Calibration method Jacobi dynamic for volatility component References

Table of contents

1 Regulatory framework: Solvency II

2 Interest-rates modelling

3 Calibration method

4 Jacobi dynamic for volatility component

Sophian Mehalla (CERMICS & Milliman) Calibration of LMM+ June 11th , 2019 3 / 32



Regulatory framework: Solvency II Interest-rates modelling Calibration method Jacobi dynamic for volatility component References

Philosophy

Regulatory framework (1/2)

European regulatory framework: Solvency II (2016)

Figure: Solvency II regulatory framework
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Philosophy

Regulatory framework (1/2)

Figure: Solvency II regulatory framework

Ñ Focus on the computation of the SCR.
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Philosophy

Regulatory framework (2/2)

Insurers are exposed to a lot of risks: behaviour of policyholders, mortality rates,
(natural) disasters, operational risks, financial risk, . . .

Solvency Capital Requirement (SCR) is a "value" of all these risks.

Figure: Structure of the standard formula
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Philosophy

Regulatory framework (2/2)

Among all these risks: the financial risk (rise/fall of interest rates, fall of some
stocks, etc.).

Figure: Structure of the standard formula

Ñ Major part of insurers’ portfolio are composed of bonds (« 80%) and other
derivatives on interest-rates.
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Challenges

What is required?

Models dedicated to interest rates are decisive, some may be complex to
handle. They are asked..

..to be Risk-Neutral ;

..to be consistent with market data (market-consistency ): models have to replicate
market prices.

Models from the bank industry have been chosen.
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Challenges

Why stochastic volatility models?

Goal: price swaptions (call option on swap rate Sm,n
T )

Pricepσimplied;K ,T q“DiscountˆES“maxpSm,n
T ´K ,0q

‰

 Choice: model the financial driver swap rate using an Ito diffusion.
The use of stochastic volatility type models is especially adapted.

Figure: Market data to be replicated

Standard uses: « 10 parameters to fit around 300 (swaption) prices.
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The Libor Market Model

Zero-Coupon bond

The LIBOR Market Model focuses on the modelling of observable quantities (following
the work of (BGM97) and (Jam97); see (BM07) for an overview of interet-rates
modelling). Let T ą 0 be a finite time horizon, and let us assume:

the market information is generated by a N-dimensional Brownian motion
pWt qtďT ;

there exists a Risk-Neutral probability P˚ (equivalent to the historical one) under
which discounted bond prices are martingales.

 Under P˚,
dPpt ,T q
Ppt ,T q

“ rt dt`σpt ,T q ¨dW˚
t

with
prt qtďT is the risk-free rate;
pσpt ,T qqtďT is the volatility structure (adapted process);
the correlation between Zero-Coupon bonds Ppt ,T q and its volatility structure σpt ,T q
can be identified.
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The Libor Market Model

Forward rates

Forwards rates: interest-rate that will prevail over a future period.

Consider a tenor structure T0ăT1ă ¨¨¨ăTK ďT . For k P J0,K ´1K, the
forward rate prevailing over the period rTk ,Tk`1s is defined by:

Fk ptq :“
1
∆k

ˆ

Ppt ,Tk q

Ppt ,Tk`1q
´1

˙

, t ďTk , ∆k :“Tk`1´Tk .

Under P˚, the dynamic of these is (Ito):

dFk ptq“Fk ptqγk ptq ¨
`

dW˚
t ´σpt ,Tk`1qdt

˘

where γk ptq :“
1`∆k Fk ptq
∆k Fk ptq

`

σpt ,Tk q´σpt ,Tk`1q
˘

.
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The Libor Market Model

Shifted forward rates

"Late" market conditions have been such that these rates could be negative:
hence the introduction of a shift coefficient δě 0. Our new modelling framework
(see (JR03)) focuses on the shifted forward rates

Fk ptq`δ, t ďTk

and is such that
P˚

´

@t ďTk :Fk ptqě´δ
¯

“ 1.

Under P˚, the dynamic of shifted rates is assumed to be:

dFk ptq“ pFk ptq`δqγk ptq ¨
`

dW˚
t ´σpt ,Tk`1qdt

˘

.
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The Libor Market Model

Swap rate

Swap rate: rate of the fixed leg in a swap (exchange) contract that will start at a
future date.

Consider two dates Tm ăTnďT . The swap rate prevailing over the period
rTm ,Tns is defined as:

Sm,n
t :“

Ppt ,Tmq´Ppt ,Tnq

BSptq
, t ďTm ,

with BSptq :“
řn´1

j“m∆j Ppt ,Tj`1q.
For similar reasons, we are lead to model the shifted swap rate:

`

Sm,n
t `δ

˘

tďTm
.

It can be shown that the shifted swap rate expresses as a deterministic function of
the shifted forward rates involved during the time interval rTm ,Tns.
Under PS , the probability measure associated to the numéraire BSptq, the
dynamic of the shifted swap rate is (Ito):

dpSm,n
t `δq“

n´1
ÿ

j“m

BpSm,n
t `δq

BpFj ptq`δq

`

Fj ptq`δ
˘

γj ptq ¨dW S
t

where the quantities BpSm,n
t `δq{BpFj ptq`δq can be analytically computed.
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The Libor Market Model

The volatility component

One of the most popular choice is

σpt ,T q“ vpt ,T qˆ
a

Vt

with
pt ,T q ÞÝÑ vpt ,T q a deterministic function (bounded and piecewise continuous);
pVt qtďT a Cox-Ingersoll-Ross process. Its dynamic is usually specified under the
Risk-Neutral measure and the dynamic under PS is deduced thanks to Girsanov’s
theorem:

dVt “ κpθ´ξptqVt qdt`ε
a

Vt dZS
t

which Feller condition 2κθě ε2 ensures to have P˚
´

@tďT :Vt ą 0
¯

“ 1 (as long as
V0ą 0);

t ÞÝÑ ξptq is a function appearing through the change of measures: it depends on the forward
rates pFj ptqqtďTj ,jPt0,¨¨¨ ,n´1u.
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Approximating the dynamic

Calibration of the model

The model is, under PS :
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

dpSm,n
t `δq“

a

Vt

n´1
ÿ

j“m

BpSm,n
t `δq

BpFj ptq`δq

`

Fj ptq`δ
˘

ηj ptq ¨dW S
t

dVt “ κpθ´ξptqVt qdt`ε
a

Vt dZ S
t

pSm,n
0 `δ,V0q PRˆR

˚
`

with γj ptq“
a

Vt ˆηj ptq.

As it stands, the model is too complex to be calibrated: Monte-Carlo simulations
are out of the operational scope.
Based on the assumption of low variability of some ratios, these are freezed to
their initial value.
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Approximating the dynamic

Calibration of the model: freezing technique

Two ways of approximating the dynamic:
the "log-normal" version (Heston type model)

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

dpSm,n
t `δq“

a

Vt pS
m,n
t `δq

n´1
ÿ

j“m

BpSm,n
0 `δq

BpFj p0q`δq

Fj p0q`δ

Sm,n
0 `δ

ηj ptq ¨dW S
t

dVt “ κpθ´ξ0ptqVt qdt`ε
a

Vt dZS
t

pSm,n
0 `δ,V0q PR`ˆR˚

`

the "normal" version (Bachelier - with vol. sto. - type model)
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

dpSm,n
t `δq“

a

Vt

n´1
ÿ

j“m

BpSm,n
0 `δq

BpFj p0q`δq

`

Fj p0q`δ
˘

ηj ptq ¨dW S
t

dVt “ κpθ´ξ0ptqVt qdt`ε
a

Vt dZS
t

pSm,n
0 `δ,V0q PRˆR˚

`

(1)

with tÑ ξ0ptq a deterministic (bounded and piecewise continuous) function.
The second model is more suited under low interest-rates regime: we will focus on
this version of the model in the following.
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Gram-Charlier density approximation

Calibration using Gram-Charlier expansion

To calibrate (1), we chose to perform a Gram-Charlier expansion, following the
work of (ABBD17), on the unkown density, f , of Sm,n

Tm
: the model is calibrated

thanks to approximating prices.

Price“
ż

R
ps´K q`f psqds«

ż

R
ps´K q`f pNqpsqds“:PricepNq

Is this approximation accurate?
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Gram-Charlier density approximation

Theory of Gram-Charlier expansions

General idea: the unknown density f is ’projected’ onto a Gaussian distribution g
(in the following, say g is the standard normal density).

L2pgq“
!

h measurable:
ş

Rhpxq2gpxqdx ă8
)

is a Hilbert space.

There exists an orthonormal basis of polynomials pHnqnPN of L2pgq (Hermite
polynomials) that are analytically known.

If f {g P L2pgq,
f pNq

g
L2pgq
ÝÝÝÝÑ
NÑ8

f
g

,

with the approximating densities f pNqpxq :“ gpxqˆ
řN

i“0 ci Hi pxq.

The coefficients ci are linear combinations of the moments of f .

f {g P L2pgq means
ş

R f pxq2e
x2
2 dx ă8
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Gram-Charlier density approximation

Gram-Charlier and stochastic volatility models (1/2)

X :“
?

V ˆG

with G∼Np0,σ2q and V ∼χ2pdq, G and V being independent.
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Figure: Gram-Charlier expansion of the density of X up to order 10 - σ2“ 0.25 & d“ 4

Unbounded volatility processes: Gram-Charlier expansion unlikely to converge
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Gram-Charlier density approximation

Gram-Charlier and stochastic volatility models (2/2)

X pMq :“
b

minpV ,MqˆG
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Figure: Gram-Charlier expansion of the density of XpMq up to order 30 - M“ 4

Requirement: σ2M ă 2
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A new model

Proposed dynamic (1/2)

Modelling assumption: the tails of (marginal) distribution of the volatility process in
(1) are thin.

We bound the volatility process to perform Gram-Charlier expansion, while
preserving (we hope!) a good approximation of the distribution.

Let us define a bounding function

Qpvq“
pv´vminqpvmax´vq
p
?

vmax´
?

vminq
2

is such that Qpvq P rvmin,vmaxs for all v P rvmin,vmaxs. Note that QpvqÑ v as
pvmin,vmaxqÑp0,8q.
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A new model

Proposed dynamic (2/2)

Based on the work (AFP18), we introduce the Jacobi dynamic for the stochastic
volatility component:
$

’

’

’

’

&

’

’

’

’

%

dpSm,n
t `δq“ ρptq

b

QpVt q}λptq}ˆdZ S
t `

b

Vt ´ρptq2QpVt qλptq ¨dZ S,K
t

dVt “ κpθ´ξ0ptqVt qdt`ε

b

QpVt qdZ S
t

pSm,n
0 `δ,V0q PRˆsvmin,vmaxr

(2)

with
λptq :“

řn´1
j“m

BpSm,np0q`δq

BpFj p0q`δq

`

Fj p0q`δ
˘

ηj ptq;

ρptq represents the correlation structure between the swap rate and its stochastic
volatility.
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A new model

Some properties

Roughly
dpSm,n

t `δq«
a

Vtλptq ¨dW S
t

While (1) is an affine model, (2) is a polynomial model which allow to compute
marginal moments of Sm,n (see (CKRT12) or (FL16) for more details on the
polynomial processes).

If Feller’s condition ε2pvmax´vminq

p
?

vmax´
?

vminq
2 ď 2κminpvmax ´θ,θ´vminq holds,

P˚
´

@t :Vt Psvmin,vmaxr

¯

“ 1.

Then, Gram-Charlier expansion can be performed on the unknown density of
Sm,n

T , as long as:

vmax ˆT ˆmax
tďT

}λptq}2ă 2
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An approximation of the standard model

Convergence towards the reference dynamic (1/2)

Weak convergence of solution to (2) towards solution of (1) as
pvmin,vmaxqÑp0,8q is shown in (AFP18).

We have more:

Theorem
Fix vmin“ 0. There exists finite constants C,K such that

sup
0ďtďT

E˚
”

|V Jacobi
t ´Vt |

ı

ďC{ logpvmax q ,

and

E˚
„

sup
0ďtďT

|V Jacobi
t ´Vt |



ďK {
b

logpvmax q.
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An approximation of the standard model

Convergence towards the reference dynamic (2/2)
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ı

obtained by Monte-Carlo simulations
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An approximation of the standard model

Convergence towards the reference dynamic (2/2)
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Conclusion & Perspectives

General theoretical framework allowing to perform a convergent Gram-Charlier
expansion..

.. and thus pricing at any given precision (from a theoretical point of view).
Pricing by ’semi’ closed-form expressions that are computationally efficient (2ˆ
faster compared to ’standard’ method).

Analysis of the error as a function of pN ,vmaxq

Impact on the SCR?
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End of presentation

Thank you!

(sophian.mehalla@enpc.fr)
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