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Challenges in Solvency II (1/3)

European regulatory framework: Solvency II (2016)

Figure 1: Solvency II regulatory framework



Introduction Calibration Density approximation Bounding volatility References End of Presentation Annex

Challenges in Solvency II (1/3)

Figure 1: Solvency II regulatory framework

Ñ Focus on the computation of the SCR.
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Challenges in Solvency II (2/3)

Insurers are exposed to a lot of risks: behaviour of policyholders,
mortality rates, (natural) disasters, operational risks, …

Figure 2: Structure of the standard formula
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Challenges in Solvency II (2/3)
Among all these risks: the financial risk is chosen to be managed
thanks to mathematical financial models.

Figure 2: Structure of the standard formula

Ñ Major part of insurers’ portfolio are bonds («80%) + other
derivatives on interest-rates.
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Challenges in Solvency II (3/3)
Models dedicated to interest rates are decisive, some may be
complex to handle. They are asked..

..to be Risk-Neutral (No Arbitrage Assumption to obtain fair
value of derivatives);
..to be consistent with market data (market-consistency): the
models are calibrated to market data, they must replicate
observed prices.

⇝ Calibration is the key point of this second point!

Figure 3: Market data to be replicated
Standard uses: « 10 parameters to fit around 300 (swaption)
prices.
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A stochastic volatility model?

Goal: pricing of swaptions (call option on swap rate)

Pricepσimplied;K,T q « E
“

maxpST ´ K, 0q
‰

⇝ Choice: model the financial driver ST (swap rate) using an Ito
diffusion.
The use of stochastic volatility type models is especially adapted.
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The DD-SV-LMM

The considered model is the Displaced Diffusion with
Stochastic Volatility Libor Market Model (DD-SV-LMM, here
under its normal version, see Annex): under a convenient
probability measure

$

’

&

’

%

dpSt ` δq “
a

VtγptqdWt

dVt “ κpθ ´ ξptqVtqdt ` ϵ
a

VtdZt

pS0, V0q P R ˆ R˚
`

@t, Vt ą 0 a.s.

[ABBD2017] proposed to take advantage of the affine property of
the model and to approximate the density of ST ñ computation
of approximated prices

Price “

ż

R
ps ´ Kq`fT psqds «

ż

R
ps ´ Kq`f

pNq

T psqds “: Price(N)
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Gram-Charlier expansion
The approximating density is built thanks to a Gram-Charlier
expansion: the unknown density fT is ’projected’ onto a
Gaussian distribution (reference distribution) g

Theorem (Cramèr [C1926])
If fT is of finite variation in every finite interval and is such that

ż

R
|fT psq|es

2{4ds ă 8

then f
pNq

T pxq “ gpxq
řN

n“0 cnHnpxq ÝÝÝÝÝÑ
NÑ`8

fT pxq at every
continuity point x of fT .

Hn polynomial function (n-th degree), explicitly known
(Hermite polynomials)
The coefficients cn are linear combination of moments of
the unknown density fT : need a way to compute the needed
moments
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Gram-Charlier and stochastic volatility? (1/2)

X :“
?
V ˆ G

with G ∼ N p0, σ2q and V ∼ χ2pdq, G and V being independent.
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Figure 4: Gram-Charlier expansion of the density of X up to order 10 -
σ2 “ 0.25 & d “ 4
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Gram-Charlier and stochastic volatility? (2/2)

XpMq :“
a

minpV,Mq ˆ G
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Figure 5: Gram-Charlier expansion of the density of XpMq up to order 30
- M “ 4

Condition: σ2M ă 2
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Skinny distribution tail

Unbounded volatility process: Gram-Charlier approximation
unlikely to converge

Modelling assumption: PpVt ą vmaxq « 0 when vmax is large
enough
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Figure 6: Approximation by ”truncate” the volatility density
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Introduction of the Jacobi dynamic

Based on a work of D. Ackerer, D. Filipović and S. Pulido
([AFP2018]), we introduce the Jacobi dynamic:

$

’

&

’

%

dSt “ ργptq
a

QpVtqdZt `
a

Vt ´ ρ2QpVtqγptqdZK
t

dVt “ κ pθ ´ ξptqVtqdt ` ϵ
a

QpVtqdZt

pS0, V0q P Rˆs0, vmaxs

@t, Vt P r0, vmaxs a.s.

if vmaxT maxtďT γ2ptq ă 2, a Gram-Charlier expansion is
theoretically allowed for the density fT of ST

Polynomial model: we can compute any moments of ST
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What is the error? (1/2)

Theorem
There exists finite constants C,K such that

sup
0ďtďT

E
”

|V Bounded
t ´ Vt|

ı

ď C{ log pvmaxq ,

and
E

„

sup
0ďtďT

|V Bounded
t ´ Vt|

ȷ

ď K{
a

log pvmaxq.
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What is the error? (2/2)
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Figure 7: E
“

sup0ďtďT |V Bounded
t ´ Vt|

‰

error and theoretical bound
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Thank You!

(sophian.mehalla@enpc.fr)
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Log-normal version of the DD-SV-LMM

$

’

&

’

%

dpSt ` δq “ pSt ` δq
a

VtγptqdWt

dVt “ κpθ ´ ξptqVtqdt ` ϵ
a

VtdZt

pS0, V0q Ps ´ δ,`8rˆR˚
`

In this framework, the shifted swap rate process pSt ` δqtě0

remains positive.
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