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Introduction

Challenges in Solvency Il (1/3)

European regulatory framework: Solvency Il (2016)
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Figure 1: Solvency Il regulatory framework
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— Focus on the computation of the SCR.



Introduction

Challenges in Solvency Il (2/3)

Insurers are exposed to a lot of risks: behaviour of policyholders,
mortality rates, (natural) disasters, operational risks, ..
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Figure 2: Structure of the standard formula



Introduction

Challenges in Solvency Il (2/3)

Among all these risks: the financial risk is chosen to be managed
thanks to mathematical financial models.
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— Major part of insurers’ portfolio are bonds (~80%) + other
derivatives on interest-rates.



Introduction

Challenges in Solvency Il (3/3)

Models dedicated to interest rates are decisive, some may be
complex to handle. They are asked..
@ ..to be Risk-Neutral (No Arbitrage Assumption to obtain fair
value of derivatives);
@ ..to be consistent with market data (market-consistency): the
models are calibrated to market data, they must replicate
observed prices.
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Challenges in Solvency Il (3/3)

Models dedicated to interest rates are decisive, some may be
complex to handle. They are asked..

@ ..to be Risk-Neutral (No Arbitrage Assumption to obtain fair
value of derivatives);

@ ..to be consistent with market data (market-consistency): the
models are calibrated to market data, they must replicate
observed prices.

~> Calibration is the key point of this second point!

Figure 3: Market data to be replicated
Standard uses: ~ 10 parameters to fit around 300 (swaption)
prices.



Calibration
A stochastic volatility model?

Goal: pricing of swaptions (call option on swap rate)
Price(c™Plied: K T) ~ E| max(Sr — K, 0)]

~~ Choice: model the financial driver St (swap rate) using an Ito
diffusion.
The use of stochastic volatility type models is especially adapted.



The DD-SV-LMM

The considered model is the Displaced Diffusion with
Stochastic Volatility Libor Market Model (DD-SV-LMM, here
under its normal version, see Annex): under a convenient
probability measure

d(Se +0) = v/ Viy(t)dW,

AV, = k(0 — E(HVI)dE + e/ VidZ,
(So, Vo) € R x R

Vt, Vi > 0 a.s.



The DD-SV-LMM

The considered model is the Displaced Diffusion with
Stochastic Volatility Libor Market Model (DD-SV-LMM, here
under its normal version, see Annex): under a convenient
probability measure

d(S; + 0) = A/ Viy(t)dW;
dV; = k(0 — £(t)Vy)dt + en/ Vi dZ,
(S0, Vo) e R x R}

Vt, Vi >0 as.

[ABBD2017] proposed to take advantage of the affine property of
the model and to approximate the density of ST = computation
of approximated prices

Price = fR(s — K) i fr(s)ds ~ fR(s - K)+f:(FN)(s)ds =: Price(N)



Density approximation

Gram-Charlier expansion

@ The approximating density is built thanks to a Gram-Charlier
expansion: the unknown density fr is 'projected’ onto a
Gaussian distribution (reference distribution) g
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Density approximation

Gram-Charlier expansion

@ The approximating density is built thanks to a Gram-Charlier
expansion: the unknown density fr is 'projected’ onto a
Gaussian distribution (reference distribution) g

Theorem (Crameér [C1926])

If fr is of finite variation in every finite interval and is such that

J |fr(s)|e™/4ds < o0
R

then £ (z) = 9(2) X_g cuHu(@) —— fr(a) at every

continuity point x of fr.

e H, polynomial function (n-th degree), explicitly known
(Hermite polynomials)

@ The coefficients ¢,, are linear combination of moments of
the unknown density fr: need a way to compute the needed
moments



Density approximation

Gram-Charlier and stochastic volatility? (1/2)

X :=VV xa@
with G ~ N(0,02) and V ~ x2(d), G and V being independent.

Gram-—Charlier expansion
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Figure 4: Gram-Charlier expansion of the density of X up to order 10 -
02=025& d=4



Density approximation

Gram-Charlier and stochastic volatility? (2/2)

XM = \/min(V, M) x G

Gram—Charlier expansion (bounded vol.)

Density
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Figure 5: Gram-Charlier expansion of the density of X (™) up to order 30
-M =4

Condition: o2M < 2



Bounding volatility

Skinny distribution tail

Unbounded volatility process: Gram-Charlier approximation
unlikely to converge



Bounding volatility

Skinny distribution tail

Unbounded volatility process: Gram-Charlier approximation
unlikely to converge

Modelling assumption: P(V; > vpnaz) & 0 when vy, is large
enough
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Bounding volatility

Introduction of the Jacobi dynamic

Based on a work of D. Ackerer, D. Filipovi¢ and S. Pulido
([AFP2018]), we introduce the Jacobi dynamic:

ds; = () QV)AZy + /Vi — p2Q(Vi)y(t)dZi-
av — k(0 —€(1) tht—l—e«/ thZt

(S(), Vb) € RX]O, vmam]

Vt, Vi € [0, Umaz] a-s.
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Bounding volatility

Introduction of the Jacobi dynamic

Based on a work of D. Ackerer, D. Filipovi¢ and S. Pulido
([AFP2018]), we introduce the Jacobi dynamic:

s, = () QV)AZy + /Vi — p2Q(Vi)y(t)dZi-
av — k(0 —€(1) tht—l—e«/ thZt

(S(), Vb) € RX]O, vmam]

Vt, Vi € [0, Umaz] a-s.

@ if UpaeT maxi<cr v2(t) < 2, a Gram-Charlier expansion is
theoretically allowed for the density fr of St

o Polynomial model: we can compute any moments of St



Bounding volatility

What is the error? (1/2)

There exists finite constants C, K such that

sup E |:‘~VtBounded — ‘/t‘] < C/ log (Umaa:) )

0<t<T

E { sup |V;Bounded _ Vt|] < K /~/108 (Vmaz)-

o<t<T




Bounding volatility

What is the error? (2/2)
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Sart(Log(Vmax))

Figure 7: E [supg<;< |VB""¥®? — V;|] error and theoretical bound
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End of Presentation

Thank You!

(sophian.mehalla@enpc.fr)



Log-normal version of the DD-SV-LMM

d(S +6) = (St + 6)V/ Vey(£)dWr

dV; = k(0 — £(t)Vy)dt + en/ Vi dZ,
(S0, Vo) €] — 6, +e0[ xR

In this framework, the shifted swap rate process (S; + 6)i=0
remains positive.
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