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Introduction

The LMM+ is a "market model" allowing to replicate a full surface of implied
volatilities (stochastic volatility) and to produce nonpositive rates (by shifting the
distribution){ very popular among insurers.

Why using such a model coming from bank industry in insurance ?

Solvency II (Solvabilité 2) is a European legislation that entered into application
January 1st, 2016.

Insurers are asked to establish their risk profile in detail, in order to value the risks
they are exposed to and deduce the SCR (Solvency Capital Requirement).

The SCR theoretically guarantees that the insurer will be solvent in 1 year in
99.5% of possible market movements{ it is a quantile.

Legislation still subject to debate (regular udpdates).
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Regulatory framework (1/2)

Solvency II is composed of 3 pillars:

Figure: Solvency II regulatory framework
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Regulatory framework (1/2)

Figure: Solvency II regulatory framework

Ñ Focus on the SCR computation.
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Regulatory framework: Solvency II (2/2)

The SCR is a valuation of the risks face by insurers: behavior of policyholders
(lapses), natural disaster, rise/fall of mortality, financial risks, ...

It can be computed either by standard formula (formula given by the regulator) or
by internal model (intended to important firms).

Figure: Standard formula structure
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Regulatory framework: Solvency II (2/2)

Mathematical financial models have been selected to value financial risks.

They are incorporated in ESG (Economic Scenario Generators).

The LMM+ is used to compute the SCR dedicated to interest-rates risk.

Figure: Structure of the standard formula
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Market consistency

Major part of insurers’ portfolio are composed of bonds (« 80%) and other
derivatives on interest-rates.
Models dedicated to their modelling are decisive, some may be complex to
handle. They are asked..

..to be Risk-Neutral;

..to be market consistency: models have to replicate market prices.

Idea: market valuation of insurers contracts. E.g.: savings contract with
guaranteed minimum rate and profits sharing. At any date t, the policyholder gets
the maximum between GMR and a share associated to profits sharing reduced by
managements fees:

ersptq ´ 1 “ max
´

erg ´ 1, PBˆ perperf ptq ´ 1q ´ perfees ´ 1q
¯

ñ ersptq “ erg ` PB
„

erperf ptq ´
PB` erfees ` erg ´ 2

PB



`

We show that the Fair Value of this contract at time t writes as (up to a discount
factor):

Vt “ V0

˜

ergt ` PB
t
ź

i“1

Call
ˆ

erperf piq, i´ 1, i,
PB` erfees ` erg ´ 2

PB

˙

¸

.
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Zero-Coupon bond

The LIBOR Market Model focuses on the modelling of observable quantities (following
the work of Brace et al. (1997) and Jamshidian (1997); see Brigo and Mercurio (2007)
for an overview of interet-rates modelling). Let T ą 0 be a finite time horizon, and let us
assume:

the market information is generated by a N-dimensional Brownian motion pWtqtďT;

there exists a Risk-Neutral probability P˚ (equivalent to the historical one) under
which discounted bond prices are martingales.

{ Under P˚,
dPpt, Tq
Ppt, Tq

“ rtdt`σpt, Tq ¨ dW˚
t

with
prtqtďT is the risk-free rate;
pσpt, TqqtďT is the volatility structure (adapted process);
the correlation between Zero-Coupon bonds Ppt, Tq and its volatility structure σpt, Tq
can be identified.

Sophian Mehalla (CERMICS & Milliman) LMM+ 28 novembre 2019 11 / 36
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Forward rates

Forwards rates: interest-rate that will prevail over a future period.

Consider a tenor structure T0 ă T1 ă ¨ ¨ ¨ ă TK ď T. For k P J0, K´ 1K, the
forward rate prevailing over the period rTk, Tk`1s is defined by:

Fkptq :“
1
∆k

ˆ

Ppt, Tkq

Ppt, Tk`1q
´ 1

˙

, t ď Tk, ∆k :“ Tk`1 ´ Tk.

Under P˚, the dynamics of this is:

dFkptq “ Fkptqγkptq ¨
`

dW˚
t ´σpt, Tk`1qdt

˘

where γkptq :“
1`∆kFkptq
∆kFkptq

`

σpt, Tkq ´σpt, Tk`1q
˘

.
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Shifted forward rates

"Late" market conditions have been such that these rates could be negative:
hence the introduction of a shift coefficient δ ě 0. Recently, practitioners focus on
the shifted forward rates (see Joshi and Rebonato (2003))

Fkptq ` δ, t ď Tk

and is such that
P˚

´

@t ď Tk : Fkptq ě ´δ
¯

“ 1.

Under P˚, the dynamics of shifted rates is assumed to be:

dFkptq “ pFkptq ` δqγkptq ¨
`

dW˚
t ´σpt, Tk`1qdt

˘

.
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Swap rate

Swap rate: rate of the fixed leg in a swap (exchange) contract that will start at a
future date.

Consider two dates Tm ă Tn ď T. The swap rate prevailing over the period
rTm, Tns is defined as:

Sm,n
t :“

Ppt, Tmq ´ Ppt, Tnq

BSptq
, t ď Tm,

with BSptq :“
řn´1

j“m∆jPpt, Tj`1q.

For similar reasons, we are lead to model the shifted swap rate:
`

Sm,n
t ` δ

˘

tďTm
.

It can be shown that the shifted swap rate expresses as a deterministic function of
the shifted forward rates involved during the time interval rTm, Tns.

Under PS, the probability measure associated to the numéraire BSptq, the
dynamics of the shifted swap rate is:

dSm,n
t “

n´1
ÿ

j“m

BpSm,n
t ` δq

BpFjptq ` δq
`

Fjptq ` δ
˘

γjptq ¨ dWS
t

where the quantities BpSm,n
t ` δq{BpFjptq ` δq can be analytically computed.

Sophian Mehalla (CERMICS & Milliman) LMM+ 28 novembre 2019 14 / 36
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The volatility component

One of the most popular choice is

σpt, Tq “ vpt, Tq ˆ
a

Vt

with
pt, Tq Þ−Ñ vpt, Tq a deterministic function (bounded and piecewise continuous);
pVtqtďT a Cox-Ingersoll-Ross process. Its dynamics is usually specified under the
Risk-Neutral measure and the dynamics under PS is deduced thanks to Girsanov’s
theorem:

dVt “ κpθ´ ξptqVtqdt` ε
a

VtdZS
t

which Feller condition 2κθ ě ε2 ensures to have P˚
´

@t ď T : Vt ą 0
¯

“ 1 (as long as
V0 ą 0);

t Þ−Ñ ξptq is a function appearing through the change of measures: it depends on the forward
rates pFjptqqtďTj ,jPt0,¨¨¨ ,n´1u.
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Calibration of the model

The model is, under PS:
$

’

’

’

’

’

&

’

’

’

’

’

%

dpSm,n
t ` δq “

a

Vt

n´1
ÿ

j“m

BpSm,n
t ` δq

BpFjptq ` δq
`

Fjptq ` δ
˘

ηjptq ¨ dWS
t

dVt “ κpθ´ ξptqVtqdt` ε
a

VtdZS
t

pSm,n
0 ` δ, V0q P RˆR

˚
`

with γjptq “
?

Vt ˆ ηjptq.

As it stands, the model is too complex to be calibrated: Monte-Carlo simulations
are out of the operational scope.
Based on the assumption of low variability of some ratios, these are freezed to
their initial values.
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Suggested dynamics

The model becomes

dSm,n
t “

a

Vt

´

ρptq}λm,nptq}dWt `

b

1´ ρptq2λm,nptq ¨ dWS,˚
t

¯

dVt “ κ
`

θ´ ξ0ptqVt
˘

dt` ε
a

VtdWt,
(1)

with

ρptq “
d
〈
Sm,n
¨ , V¨

〉
t

b

d
〈
Sm,n
¨ , Sm,n

¨

〉
t d 〈V¨, V¨〉t

.

As affine dynamics, (1) offers the explicit knowledge of the characteristic function
of Sm,n.
Swaption prices ErpSm,n

T ´ Kq`s can be computed... but quite long!

Proposed calibration process: use a Gram-Charlier expansion (see Devineau
et al. (2017)) based on moments of Sm,n.
Question: convergence of Gram-Charlier expansion?
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Gram-Charlier expansions

General idea: the unknown density f is ’projected’ onto a Gaussian distribution g.

L2pgq “
 

h measurable:
ş

R hpxq2gpxqdx ă 8
(

is a Hilbert space.

There exists an orthonormal basis of polynomials pHnqnPN of L2pgq (Hermite
polynomials) that are analytically known.

If f {g P L2pgq,
f pNq

g
L2pgq−−−Ñ
NÑ8

f
g

,

with the approximating densities f pNqpxq :“ gpxq ˆ
řN

i“0 ciHipxq.
The coefficients ci are linear combinations of the moments of f .

f {g P L2pgq means
ş

R f pxq2e
px´µq2

2σ2 dx ă 8.

Theorem
For general unbounded stochastic volatility models, such as (1), this condition is not
satisfied.
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Gram-Charlier and stochastic volatility models (1/2)

X :“
?

V ˆ G

with G ∼Np0,σ2q and V ∼ χ2pdq, G and V being independent.
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Figure: Gram-Charlier expansion of the density of X up to order 10 - σ2 “ 0.25 & d“ 4
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Gram-Charlier and stochastic volatility models (2/2)

XpMq :“
a

minpV, Mq ˆ G
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 Gram−Charlier expansion (bounded vol.)
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Order 30

Figure: Gram-Charlier expansion of the density of XpMq up to order 30 - M“ 4

Requirement: σ2M ă 2
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Proposed dynamics (1/2)

We bound the volatility process to perform Gram-Charlier expansion, while
preserving (we hope!) a good approximation of the swap rate distribution.

Fix 0 ď vmin ă vmax ď 8. Let us define the bounding function

Qpvq “
pv´ vminqpvmax ´ vq
p
?

vmax ´
?

vminq
2

such that Qpvq P rvmin, vmaxs for all v P rvmin, vmaxs. Note that Qpvq Ñ v as
pvmin, vmaxq Ñ p0,8q.
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Figure: vmin “ 0.8 and vmax “ 4
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Figure: vmin “ 0.01 and vmax “ 0.5
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Proposed dynamics (2/2)

Based on the work Ackerer et al. (2018), we introduce the Jacobi dynamics for the
stochastic volatility component:

dSm,n
t “ ρptq

a

QpVtq}λ
m,nptq} ˆ dWt `

b

Vt ´ ρptq2QpVtqλ
m,nptq ¨ dWS,˚

t

dVt “ κpθ´ ξ
0ptqVtqdt` ε

a

QpVtqdWt,
(2)

with
d

QpVtq

Vt
ρptq “

d
〈
Sm,n
¨ , V¨

〉
t

b

d
〈
Sm,n
¨ , Sm,n

¨

〉
t d 〈V¨, V¨〉t

.

If Feller condition ε2pvmax´vminq

p
?

vmax´
?

vminq
2 ď 2κmin pvmax ´ θ,θ´ vminq holds,

P˚
´

@t : Vt Psvmin, vmaxr
¯

“ 1.

When pvmin, vmaxq “ p0,`8q, we formally obtain (1).
Weak convergence of (2) towards (1) as pvmin, vmaxq Ñ p0,`8q.
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Gram-Charlier expansion

Assumption (A):
"

4κθ ą ε2

2κpvmax ´ θq ě ε2

and

Assumption (B): sup
tPr0,Ts

|ρptq| ă 1.

Theorem
Under (A) and (B), converging Gram-Charlier expansion can be performed on the
unknown density of Sm,n

T under (2) for all vmin ě 0, as long as:

vmaxTˆmax
tďT

}λm,nptq}2 ă 2σ2

Application to swaptions pricing:

PTpϕq “

ż

R
fTpsqϕpsqds “

〈
ϕ, f̄T

〉
L2pgq “

ÿ

pě0

hpϕp

with
ϕp “

〈
ϕ, Hp

〉
L2pgq “

ş

RϕpsqHppsqgpsqds and hp “
〈
Hp, f̄T

〉
L2pgq “ E

“

HppSm,n
T q

‰

.
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Polynomial property

(2) is not affine: to compute moments of Sm,n
T , we use the polynomial property of

the model (see for instance Cuchiero et al. (2012) or Filipović and Larsson (2016)).
A diffusion is said to be polynomial if its infinitesimal generator maps the set of
polynomial of a given order K to itself:

ApPKq Ă PK.

In this case, the action of A over PK can be uniquely represented with a matrix
AK; then, moments can be computed using the exponential exp

`

AK˘.

In our setting, the infinitesimal generator depends on time, At. For
t1 ă t2 ă ... ă tJ ď t ď T, the action of At is represented through matrices AK

j
over each time interval. The polynomial moments can be computed as

E
“

ppSm,n
t q

‰

“

´

1, Sm,n
0 , . . . , pSm,n

0 qK
¯

¨

¨

˝

J
ź

j“1

exp
´

ptj ´ tj´1qAK
j´1

¯

˛

‚exp
´

pt´ tJqAK
J

¯

−Ñp .
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Convergence toward the reference dynamics (1/2)

Weak convergence of solution of (2) towards solution of (1) as
pvmin, vmaxq Ñ p0,8q is shown in Ackerer et al. (2018).

We have more:

Theorem
Fix vmin “ 0. There exists finite constants C1, C2 such that

sup
0ďtďT

E
”

|VJacobi
t ´ Vt|

ı

ď C1{ log pvmax{V0q ,

and

E

«

sup
0ďtďT

|VJacobi
t ´ Vt|

ff

ď C2{
a

log pvmax{V0q.
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Convergence toward the reference dynamics (2/2)

Previous result allows to get a pricing error: let us denote pSm,n,J
t qtďT the swap rate

under dynamics (2) and pSm,n
t qtďT under dynamics (1).

Denote the model error of pricing by

εmodel “
ˇ

ˇ

ˇ
ES “ϕ

`

Sm,n
T

˘‰

´ ES
”

ϕ
´

Sm,n,J
T

¯ıˇ

ˇ

ˇ
.

Theorem
For a Lipschitz payoff ϕ, there exists constants K1 and K2 P R such that

εmodel ď

d

K1

logpvmax{V0q
`

K2

vmax{V0
.
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Convergence toward the reference dynamics (1/3)
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Convergence toward the reference dynamics (2/3)

Are the obtained convergence rates optimal ?
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log pvmax{V0q

0.0 0.5 1.0 1.5 2.0 2.5

−
14

−
12

−
10

−
8

−
6

−
4

−
2

Log(Log(Vmax/V0))

Lo
g.

 L
1 

E
rr

or
s

Esp. Sup.

Esp. 1Y

Esp. 10Y

vmin “ 0.8 and vmax “ 4

0.0 0.5 1.0 1.5 2.0 2.5

−
12

−
10

−
8

−
6

−
4

−
2

Log(Log(Vmax/V0))

Lo
g.

 L
1 

E
rr

or

Log. of Esp. Sup. MC

Lin. reg. on 1st subinterval

Lin. reg. on 2nd subinterval

vmin “ 0.01 and vmax “ 0.5

Figure: log
´

ESrsup0ďsď5 |V
J,vmax
s ´ VC

s |s
¯

, log
´

ESr|VJ,vmax
1 ´ VC

1 |s
¯

and log
´

ESr|VJ,vmax
10 ´ VC

10|s
¯

as func-

tions of log plogpvmax{V0qq (left) and linear regression (right).

Sophian Mehalla (CERMICS & Milliman) LMM+ 28 novembre 2019 31 / 36



Regulatory framework: Solvency II Interest-rates modelling Standard approximation Pricing under Jacobi dynamics for volatility component Illustrations References

Convergence toward the reference dynamics (3/3)

Numerical results suggest that the convergence rate could be still improved.
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Figure: log
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as func-

tions of log pvmax{V0qq.
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Gram-Charlier approximating prices (1/2)

σ2 ą
vmaxT

2
max
tďT

}λm,nptq}2

is sharp to ensure the convergence of Gram-Charlier series.
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Figure: Divergence of
řN

pě0 hpϕp as N increases.
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Gram-Charlier approximating prices (2/2)

Assumption (A):
"

4κθ ą ε2

2κpvmax ´ θq ě ε2 ` σ2 ą vmaxT
2 maxtďT }λ

m,nptq}2
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Figure: Exemple of convergence of approximating prices to empirical ones: using a given Gaussian density as refer-
ence (left) and an adapted Gaussian distribution (matching first two moments) as reference (right).

Sophian Mehalla (CERMICS & Milliman) LMM+ 28 novembre 2019 34 / 36



Regulatory framework: Solvency II Interest-rates modelling Standard approximation Pricing under Jacobi dynamics for volatility component Illustrations References

References
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End of presentation

Thank you!

(sophian.mehalla@enpc.fr)
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