Densities approximations for stochastic volatility models in Insurance framework
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Abstract

Density approximations consist in nearing a targeted unknown probability
density thanks to its moments. Late regulatory requirements lead insurance com-
panies to use intensively (by performing repeated calibrations) mathematical mod-
els dedicated to specific financial drivers. Since some continuous time models (e.g.
Heston model for index equity) can lead to time-consuming computations, per-
forming a density approximation (the most famous one probably being the Gram-
Charlier type A expansion) could be a solution. However, such approximations
are delicate, and can only be performed (theoretically) under strict conditions. In
this work, we illustrate the issues related to Gram-Charlier expansions for a toy
model with stochastic volatility, and highlight the key challenges related to the
extension to broader Heston-type models.

Insurance framework

Insurance and banking industries need to perform repeated calibrations of financial
models. So-called market consistent tforecasts are notably required for a variety of
topics faced by insurance companies:

— projection of insurance assets and liabilities in order to value guarantees and
financial options embedded in insurance contracts;

— computation of the Solvency Capital Requirement:
— implementation of intensive recalibration process:

— hedging of Variable Annuities.

Among the financial models required, those dedicated to interest rates have reached

a significant complexity within the insurance market practice. Our purpose relates
to the improvement of the calibration procedure of the LIBOR Market Model with
Stochastic Volatility and Displaced Diffusion (DD-SV-LMM) which is now widely

used.

Density approximation for stochastic
volatility model

1] proposed a new method for calibration of the DD-SV-LMM, based on approx-
imation techniques of the density of the underlying (the swap rate, in the context
of the paper). The authors approximate the (spot) price of a swaption of strike K
maturity T5,, tenor T;,, with a terminal value of the swap rate Sp | by approximat-
ing the density of the latter:

m=E[(S}, — K)i] = Jp(s = K) i fu(s)ds = [p(s — K) . [, (s)ds = 7V

As pointed out in [1], this method leads to a striking acceleration of the calibration
procedure while preserving a good accuracy in prices replication.
Gram-Charlier expansion

In this section, we precise how to approximate a given target density, thanks to
a Gram-Charlier (type A) expansion. We refer to [2] for more details. Let f be
a probability density on R. We aim at approximating it, thanks to a reference
probability density, the Normal one:

The Hermite polynomials (Hy, Hy,--- , H,) form an orthonormal basis of the
Hilbert space £%(g) := {h measurable : [ |h(x)]?g(x)dx < oo}. Assuming that
the likelihood-ratio f/g lies in £%(g) is enough to expand it in terms of the Hermite
polynomials. But, the sufficient condition is hardly met for usual distributions. [3]
proved that if f is of finite variation and is such that

[ 1 ledu < oc.

then a Gram-Charlier expansion is possible.

Theorem (Cramér):

At every continuity point x of f:

lim g(x) E_:Oann(fE) = f(x).

N—+400

Note that the coefficients (¢, ),en only depends on the moments of f.
Application to stochastic volatility model
We consider the following general stochastic volatility model:

AV = b(t, Vi)dt + h(t, V;)dW;
with the correlation structure defined by <B., I/V.>t = pt, t > 0. We assume the

function u takes its value in R, is not constant and that the function A is not equal
fi(w)
9(u)
and thus f/g & £°(g). Gram-Charlier series provide a fast calibration algorithm

when the expansion order is carefully chosen (4 in the context of the DDSVLMM),
as showed in [1]. However, the extension of this method to general orders appears
challenging according to this last observation. Therefore, additional investigations
are required to explore modelling frameworks that are suited for systematic Gram-
Charlier expansions.

to zero. ForaT' > 0, fris the density of S7, and one can show that [ du = oo,

Results on a toy model

To illustrate how sensitive a Gram-Charlier type A expansion is, we take a look
at two simple stochastic volatility model. First, we consider that our variable of
interest 1s:

X =V xG

with G ~ N(0,0%) and V' ~ x?(4), G and V being independent. The use of

a chi-square distribution is motivated by the use of Cox-Ingersoll-Ross volatility
dynamics in Heston-type models. The moments of X are analytically known:

E[X*"] = (n+1)(2n)lc™"

The second model is just as elementary as the first one, since it is a slight
modification of it:

XM .= VVAM x G,

with M € R,. Again, the moments of X™) are (semi-)analytically known, allow-
ing to perform a Gram-Charlier expansion. The observed divergence for the first
model (Fig. 1) is mainly due to the non-boundedness of the volatility variable.
Note that the successive approximations are even not probability densities. This is
why the 'volatility variable’ has been bounded in the second model.
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Figure 1:Gram-Charlier expansion of the density of X up to order 8 - o2 = 0.25

Gram—-Charlier expansion (bounded vol.)
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Figure 2:Gram-Charlier expansion of the density of X (M) up to order 30 - M =14

Under the assumption (A): o*M < 2, the Gram-Charlier expansion is theoretically
possible. The illustrated results in Fig. 2 empirically confirm it. Note that (A)
means that the variance of our variable of interest can not be arbitrary large.
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