Topological bounds for graph representations

Frédéric Meunier

Joint work with Meysam Alishahi

IBS Discrete Math Seminar Daejeon, 2019

Plan

- 1 Graph representations and Kneser graphs
- 2 Cross-index and Hom-complex
- 3 Generalization: matroids and rainbow balanced bicliques
- 4 Open questions

Graph representations

Orthogonal representation¹ of a graph G = (V, E): assignment of a vector $\mathbf{x}_v \in \mathbb{R}^t$ to each vertex v such that

- $\mathbf{x}_v \neq \mathbf{0}$ for all $v \in V$.
- $\langle \mathbf{x}_u, \mathbf{x}_v \rangle = 0$ for all $uv \in E$.

¹This definition is often given for the complement of *G* instead.

Graph representations

Orthogonal representation¹ of a graph G = (V, E): assignment of a vector $\mathbf{x}_v \in \mathbb{R}^t$ to each vertex v such that

- $\mathbf{x}_v \neq \mathbf{0}$ for all $v \in V$.
- $\langle \mathbf{x}_{u}, \mathbf{x}_{v} \rangle = 0$ for all $uv \in E$.

Orthogonality dimension of G: minimal t s.t. there exists an orthogonal representation. Denoted by $\xi_{\mathbb{R}}(G)$.

Figure: Two examples of orthogonal representations; both graphs have actually orthogonality dimension equal to 3.

¹This definition is often given for the complement of *G* instead.

Relevance

Plays an important role in information theory, e.g., for the Shannon capacity $\Theta(G) = \lim_{k \to \infty} \sqrt{\alpha(G^k)}$. (Here the graph product is the strong product \boxtimes .)

Lovász (1979): $\Theta(G) \leqslant \xi_{\mathbb{R}}(\overline{G})$.

Also useful in the theory of geometric representations of graphs: e.g., Lovász, Saks, and Schrijver (1989) gave a geometric characterization of d-connectivity in graphs using orthogonal representations of dimension d.

Graph representations over any field

Orthogonal representation² of a graph G = (V, E) over a field \mathbb{F} : assignment of a vector $\mathbf{x}_v \in \mathbb{F}^t$ to each vertex v such that

- $\langle \mathbf{x}_{v}, \mathbf{x}_{v} \rangle \neq 0$ for all $v \in V$.
- $\langle \mathbf{x}_{u}, \mathbf{x}_{v} \rangle = 0$ for all $uv \in E$.

Orthogonality dimension of G: minimal t s.t. there exists an orthogonal representation. Denoted by $\xi_{\mathbb{F}}(G)$.

Figure: Two examples of orthogonal representations over \mathbb{Z}_2 ; both graphs have actually orthogonality dimension equal to 3.

²This definition is often given for the complement of *G* instead.

Relevance

Orthogonal representations over finite fields: introduced by Peeters (1996) as a tool to study some complexity problems for graph colorings.

Orthogonal representations over \mathbb{C} : introduced by de Wolf (2001) to study quantum communication (information theory)

Properties

We have for any field \mathbb{F} :

$$\omega(G) \leqslant \xi_{\mathbb{F}}(G) \leqslant \chi(G).$$

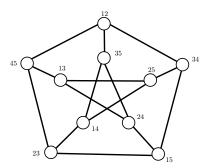
- First inequality: orthogonal representation of a clique provides independent vectors.
- Second inequality: unit vectors provide a graph representation.

Kneser graphs

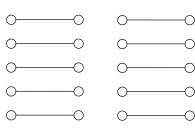
 $KG_{n,k}$, with $n \ge 2k - 1$, is the Kneser graph with

$$V = {\binom{[n]}{k}}$$

$$E = \left\{ XY \in {\binom{V}{2}} : X \cap Y = \emptyset \right\}$$



 $KG_{5,2}$ is the Petersen graph



 $KG_{6,3}$ is the matching M_{10}

"Historical importance" of Kneser graphs

Theorem (Lovász 1978)
$$\chi(\mathsf{KG}_{n,k}) = n - 2k + 2.$$

Conjectured by Kneser (1955).

$$\chi(\mathsf{KG}_{n,k}) \leqslant n - 2k + 2$$
 noticed by Kneser.

 $\chi(KG_{n,k}) \ge n - 2k + 2$ requires use of algebraic topology and topological lower bounds.

1978: birth of topological combinatorics.

Relevance of Kneser graphs

Kneser graphs have many interesting properties, e.g.,

- triangle-free graphs with arbitrarily large chromatic number.
- graphs with arbitrarily large ratio between fractional and usual chromatic numbers:

$$\chi^f(\mathsf{KG}_{n,k}) = \frac{n}{k}$$
 $\chi(\mathsf{KG}_{n,k}) = n - 2k + 2.$

Kneser graphs and graph representations

Theorem (Haviv 2019)

- $\xi_{\mathbb{R}}(\mathsf{KG}_{n,k}) = n 2k + 2.$ $\xi_{\mathbb{C}}(\mathsf{KG}_{n,k}) \geqslant \frac{1}{2}(n 2k + 2).$

Since $\xi_{\mathbb{R}}^f(\mathsf{KG}_{n,k}) \leqslant \frac{n}{k}$: examples of arbitrarily large ratio between fractional orthogonality dimension and orthogonality dimension.

Kneser graphs and graph representations

Theorem (Haviv 2019)

- $\xi_{\mathbb{R}}(\mathsf{KG}_{n,k}) = n 2k + 2.$ $\xi_{\mathbb{C}}(\mathsf{KG}_{n,k}) \geqslant \frac{1}{2}(n 2k + 2).$

Since $\xi_{\mathbb{D}}^f(\mathsf{KG}_{n,k}) \leqslant \frac{n}{L}$: examples of arbitrarily large ratio between fractional orthogonality dimension and orthogonality dimension.

Fractional orthogonality dimension: there is a systematic way for introducing fractional counterparts of graph parameters (Hu, Tamo, Shayevitz 2018).

Topological lower bounds on orthogonality dimension

A topological lower bound:

For any graph G, we have $\chi(G) \geqslant \operatorname{cd}_2(\mathcal{K}_G)$.

Haviv showed that the topological method can also be applied for bounding the orthogonality dimension over \mathbb{R} and \mathbb{C} :

Theorem (Haviv 2019)

For any graph G, we have

- $\xi_{\mathbb{R}}(G) \geqslant \operatorname{cd}_2(\mathcal{K}_G)$.
- $\xi_{\mathbb{C}}(G) \geqslant \frac{1}{2} \operatorname{cd}_2(\mathcal{K}_G)$.

All bounds and all fields

Actually many topological lower bounds, with a clear hierarchy:

$$\begin{array}{lll} \chi(G) &\geqslant & \mathsf{Xind}(\mathsf{H}(G)) + 2 &\geqslant & \mathsf{ind}(\mathsf{H}(G)) + 2 \\ &\geqslant & \mathsf{ind}(\mathsf{B}_0(G)) + 1 &\geqslant & \mathsf{coind}(\mathsf{B}_0(G)) + 1 \\ &\geqslant & \mathsf{coind}(\mathsf{H}(G)) + 2 &\geqslant & n - \mathsf{alt}(\mathcal{K}_G) \\ &\geqslant & \mathsf{cd}_2(\mathcal{K}_G). \end{array}$$

(In the case of Kneser graphs $KG_{n,k}$, all these bounds are equal to n-2k+2.)

Theorem (Alishahi, M. 2019+)

For any graph G and field \mathbb{F} , we have $\xi_{\mathbb{F}}(G) \geqslant \operatorname{Xind}(H(G)) + 2$.

Corollary (Alishahi, M. 2019+)

$$\xi_{\mathbb{F}}(\mathsf{KG}_{n,k}) = n - 2k + 2$$
 independently of the field \mathbb{F} .

Plan

- 1 Graph representations and Kneser graphs
- 2 Cross-index and Hom-complex
- Generalization: matroids and rainbow balanced bicliques
- 4 Open questions

Z₂-poset: poset $P = (X, \preceq)$ with a fixed-point free order-preserving involution ν , i.e.:

- $\nu^2 = id$.
- $\nu(x) \neq x$ for all $x \in X$.
- $\nu(x) \leq \nu(y)$ when $x \leq y$.

Z₂-poset: poset $P = (X, \preceq)$ with a fixed-point free order-preserving involution ν , i.e.:

- $\nu^2 = id$.
- $\nu(x) \neq x$ for all $x \in X$.
- $\nu(x) \leq \nu(y)$ when $x \leq y$.

A map ϕ between two Z_2 -posets P and Q is a Z_2 -map if $\phi \circ \nu = \nu \circ \phi$.

Z₂-poset: poset $P = (X, \preceq)$ with a fixed-point free order-preserving involution ν , i.e.:

- $\nu^2 = id$.
- $\nu(x) \neq x$ for all $x \in X$.
- $\nu(x) \leq \nu(y)$ when $x \leq y$.

A map ϕ between two Z_2 -posets P and Q is a Z_2 -map if $\phi \circ \nu = \nu \circ \phi$.

 $Q_t = Z_2$ -poset with elements $\{\pm 1, \ldots, \pm (t+1)\}$ and with $x \prec y$ if |x| < |y|.

Z₂-poset: poset $P = (X, \preccurlyeq)$ with a fixed-point free order-preserving involution ν , i.e.:

- $\nu^2 = id$.
- $\nu(x) \neq x$ for all $x \in X$.
- $\nu(x) \leq \nu(y)$ when $x \leq y$.

A map ϕ between two Z_2 -posets P and Q is a Z_2 -map if $\phi \circ \nu = \nu \circ \phi$.

 $Q_t = Z_2$ -poset with elements $\{\pm 1, \dots, \pm (t+1)\}$ and with $x \prec y$ if |x| < |y|.

Cross-index of P:

- ullet smallest t s.t. there is an order-preserving Z_2 -map $P o Q_t$.
- denoted by Xind(P).
- introduced by Simonyi, Tardif, and Zsbán (2013).

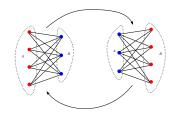
Hom-complex

Hom-complex of a graph G = (V, E):

$$\big\{(A,B)\colon A,B\in 2^V\setminus\{\varnothing\},\ A\cap B=\varnothing,\ G[A,B] \text{ is a bliclique }\big\}$$
 with $(A,B)\preccurlyeq(A',B')$ if $A\subseteq A'$ and $B\subseteq B'$.

Denoted by H(G).

It is a Z_2 -poset:



So, it has a cross-index Xind(H(G)).

Cross-index is a lower bound (for coloring)

Proof of
$$\chi(G) \geqslant Xind(H(G)) + 2$$
:

Consider a proper coloring $c \colon V \to [m]$.

Define $\phi(A, B) = \pm \min(c(A \cup B))$,

- with '+' if c(A) < c(B).
- with '-' if c(A) > c(B).

It is an order-preserving Z_2 -map $H(G) \rightarrow Q_{m-2}$.

 $\mathsf{Xind}(\mathsf{H}(\mathsf{G})) = \mathsf{smallest}\ t\ \mathsf{s.t.}\ \mathsf{there}\ \mathsf{is}\ \mathsf{an}\ \mathsf{order}\mathsf{-preserving}\ \mathsf{Z}_2\mathsf{-map}\ \mathsf{H}(\mathsf{G}) o \mathsf{Q}_t.$

Thus
$$\chi(G) \geqslant Xind(H(G)) + 2$$
.

Cross-index is a lower bound (for orthogonality dimension)

Proof of $\xi_{\mathbb{F}}(G) \geqslant Xind(H(G)) + 2$:

Consider an s-dimensional orthogonal representation $(x_v)_{v \in V}$.

Choose any total order \leq on the subspaces of \mathbb{F}^s .

Define $\phi(A, B) = \pm (\dim \mathcal{V}(A) + \dim \mathcal{V}(B) - 1)$,

- with '+' if V(A) < V(B),
- with '-' if $\mathcal{V}(A) > \mathcal{V}(B)$,

where $V(U) = \operatorname{span} \{x_v : v \in U\}.$

Since $\mathcal{V}(A) \subseteq \mathcal{V}(B)^{\perp}$, we have dim $\mathcal{V}(A) + \dim \mathcal{V}(B) \leqslant s$, and thus ϕ is an order-preserving Z_2 -map $H(G) \to Q_{s-2}$.

Thus $\xi_{\mathbb{F}}(G) \geqslant \operatorname{Xind}(\operatorname{H}(G)) + 2$.

Plan

- 1 Graph representations and Kneser graphs
- 2 Cross-index and Hom-complex
- 3 Generalization: matroids and rainbow balanced bicliques
- Open questions

Independent representation over a matroid

A crucial property used in the previous proof:

• $x_v \notin \mathcal{V}(N(v))$ for all $v \in V$.

Independent representation over a matroid M: assignment of an element $x_v \in M$ to each vertex v s.t. $x_v \notin \text{span}\{x_u \colon u \in N(v)\}$.

Common generalization of proper colorings and orthogonal representations:

- proper colorings are independent representations over the free matroid (all subsets are independent)
- orthogonal representations are independent representations over the linear matroid

Rainbow bicliques

The same proof as before gives:

Theorem

If G has an independent representation over a matroid M, then there is a biclique G[A,B] s.t.

- the elements on each side form an independent set.
- |A| + |B| = Xind(H(G)) + 2.

Rainbow balanced bicliques

With the help of a "Ky Fan lemma" for the cross-index (Alishahi, Hajiabolhassan, M. 2017), we get the existence of a balanced biclique.

Theorem (Alishahi, M. 2019+)

If G has an independent representation over a matroid M, then there is a biclique G[A, B] s.t.

- the elements on each side form an independent set.
- $|A| \approx |B| \approx \frac{1}{2} \operatorname{Xind}(\operatorname{H}(G)) + 1$.

The last item implies $rk M \geqslant \frac{1}{2} Xind(H(G)) + 2$.

Some corollaries (1)

Local chromatic number of a graph G:

$$\chi^{\ell}(G) = \min \max_{v \in V} |c(N[v])|,$$

where the minimum is taken over all proper colorings c.

Corollary (Simonyi, Tardos 2006)

If $\chi(\mathcal{G})\geqslant t$ for "topological reasons", then $\chi^\ell(\mathcal{G})\geqslant t/2+1.$

Proof: use $M = U_m^r$ (uniform matroid of rank r with m elements).

Some corollaries (2)

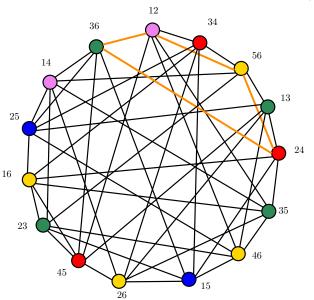
Corollary (Simonyi, Tardos 2006; Simonyi, Tardif, Zsbán 2013)

If $\chi(G)\geqslant t$ for "topological reasons", then there is a rainbow balanced biclique of size t in every proper coloring of G.

rainbow = the vertices get distinct colors
balanced = the sides are almost the same size

Proof: use the free matroid.

A rainbow biclique in $\mathsf{KG}_{6,2}$



Some corollaries (3)

 $V \times V$ matrix A represents a graph G over $\mathbb F$ if

- $A_{v,v} \neq 0$ for every vertex v.
- $A_{u,v} = 0$ for every adjacent vertices u, v.

Min-rank parameter³ of a graph G over a field \mathbb{F} :

$$\operatorname{\mathsf{minrk}}_{\mathbb{F}}(G) = \min \{ \operatorname{\mathsf{rk}}(A) \colon A \text{ represents } G \text{ over } \mathbb{F} \}.$$

(Due to Haemers (1981); provides good upper bounds on Shannon capacity.)

$$\mathsf{minrk}_{\mathbb{F}}(G) \geqslant \frac{1}{2} \, \mathsf{Xind}(\mathsf{H}(G)) + 2 \text{ for any field } \mathbb{F}.$$

(Haviv (2019) proved minrk
$$_{\mathbb{R}}(G)\geqslant\sqrt{\frac{\operatorname{cd}_2(\mathcal{K}_G)}{2}}.)$$

 $^{^{3}}$ Usually, this definition is given for the complement of G instead.

Fan lemma for the cross-index

Lemma (Alishahi, Hajiabolhassan, M. 2017)

Let (P, \preccurlyeq) be a free Z_2 -poset and $s = \operatorname{Xind}(P)$. Consider an order-preserving Z_2 -map $\phi \colon P \to Q_r$ with $r \geqslant s$. Then there exists a chain $p_1 \prec p_2 \prec \cdots \prec p_r$ such that

$$0 < -\phi(p_1) < +\phi(p_2) < -\phi(p_3) < \cdots < (-1)^r \phi(p_r).$$

Moreover, if r=s, then for every $\varepsilon\in\{+,-\}^r$ there exists a chain $p_1\prec p_2\prec\cdots\prec p_r$ s.t.

$$0 < \varepsilon_1 \phi(p_1) < \varepsilon_2 \phi(p_2) < \varepsilon_3 \phi(p_3) < \cdots < \varepsilon_r \phi(p_r).$$

This answers a question of Simonyi, Tardif, and Zsbán 2013. It shows that when the coloring or the orthogonal representation is optimal, much more can be said about "rainbow" bicliques.

Plan

- 1 Graph representations and Kneser graphs
- 2 Cross-index and Hom-complex
- 3 Generalization: matroids and rainbow balanced bicliques
- 4 Open questions

Better bounds for some matroids?

Let
$$t = Xind(H(G)) + 2$$
.

Theorem

Assume G has an independent representation over a matroid M. Then there is a biclique G[A,B] s.t.

- the elements on each side form an independent set.
- $|A| \approx |B| \approx t/2 + 1$.

In particular $rk(M) \geqslant t/2 + 2$.

When M is a linear matroid and we require orthogonality for adjacent vertices, then we get actually $rk(M) \ge t$. Same thing when M is the free matroid: proper colorings.

Question

Under which general condition do we have $rk(M) \ge t$?

A "naive" condition

Under the condition:

$$\operatorname{rk}\{x_v \colon v \in A\} + \operatorname{rk}\{x_v \colon v \in B\} \leqslant \operatorname{rk}(M)$$
 when $G[A,B]$ is a balanced biclique, (\star) we have the conclusion $\operatorname{rk}(M) \geqslant t$.

 (\star) is probably the most general condition and covers the previous cases.

But

Proposition (Alishahi, M. 2019+)

Deciding whether an independent representation satisfies the condition above is NP-complete.

The existence of a general polynomial condition covering the previous cases remains open.

Thank you.