Colorful complete bipartite subgraphs in generalized Kneser graphs

Frédéric Meunier

August 17th, 2018

Joint work with Meysam Alishahi and Hossein Hajiabolhassan

Any proper 3-coloring of the Petersen graph contains a C_6 colored cyclically with the 3 colors.

Any proper 3-coloring of the Petersen graph contains a C_6 colored cyclically with the 3 colors.

Any proper 3-coloring of the Petersen graph contains a C_6 colored cyclically with the 3 colors.

Plan

- Chen's theorem
- Generalization of Chen's theorem
- Proof techniques and lemmas
- Applications and open questions

Chen's theorem

The Petersen graph is also the graph with

$$V = {[5] \choose 2}$$

$$E = \left\{ XY \in {V \choose 2} : X \cap Y = \emptyset \right\}$$

Kneser graphs

The Petersen graph is the Kneser graph KG(5, 2).

KG(n, k) is the Kneser graph with

$$V = {\binom{[n]}{k}}$$

$$E = \left\{ XY \in {\binom{V}{2}} : X \cap Y = \emptyset \right\}$$

Theorem (Lovász 1978) $\chi(KG(n,k)) = n - 2k + 2.$

$$\chi(\mathsf{KG}(n,k)) = n - 2k + 2k$$

Chen's theorem

Theorem (Chen 2012)

Any proper coloring of KG(n, k) with a minimum number of colors contains a $K_{n-2k+2, n-2k+2}^*$ with all colors on each side.

 $K_{t,t}^* = K_{t,t}$ minus a perfect matching.

Petersen graph: $K_{3,3}^* = C_6$ and there always exists a

KG(6, 2):

KG(6, 2):

Any proper 4-coloring of KG(6,2) contains a $K_{4,4}^*$ with all 4 colors on each side.

Generalization of Chen's theorem

Generalized Kneser graphs

Let $\mathcal{H} = (V(\mathcal{H}), E(\mathcal{H}))$ be a hypergraph.

 $KG(\mathcal{H})$ is the generalized Kneser graph with

$$V = E(\mathcal{H})$$

 $E = \left\{ ef \in \binom{V}{2} : e \cap f = \emptyset \right\}$

KG(n, k) obtained with $\mathcal{H} = \text{complete } k$ -uniform hypergraph on n vertices.

Every simple graph is a generalized Kneser graph.

Dol'nikov's theorem

Hypergraph
$$\mathcal{H}=(V(\mathcal{H}),E(\mathcal{H}))$$
. 2-colorability defect of \mathcal{H} : $\mathrm{cd}_2(\mathcal{H})=\begin{pmatrix} \text{minimum number of vertices to remove so that the remaining hypergraph is 2-colorable} \end{pmatrix}$

$$\operatorname{cd}_2(\mathcal{H}) = \min |X| \text{ s.t. } (V(\mathcal{H}) \setminus X, \{e \in E(\mathcal{H}) \colon e \cap X = \varnothing\}) \text{ is } 2\text{-colorable}$$

Theorem (Dol'nikov 1993)

$$\chi(\mathsf{KG}(\mathcal{H}))\geqslant \mathsf{cd}_2(\mathcal{H}).$$

Examples

When \mathcal{H} is the k-uniform complete hypergraph on n vertices: $cd_2(\mathcal{H}) = n - 2k + 2$.

When \mathcal{H} is a graph: $cd_2(\mathcal{H}) = minimum$ of vertices to remove so that we get a bipartite graph.

Generalization of Chen's theorem

Theorem (Alishahi-Hajiabolhassan-M. 2017)

Let \mathcal{H} be a hypergraph with no singleton.

If $\chi(\mathsf{KG}(\mathcal{H})) = \mathsf{cd}_2(\mathcal{H})$, then any proper coloring of $\mathsf{KG}(\mathcal{H})$ with a minimum number of colors contains a $K^*_{\mathsf{cd}_2(\mathcal{H}),\mathsf{cd}_2(\mathcal{H})}$ with all colors on each side.

Example:

$$\chi(\mathsf{KG}(\mathcal{H})) = \mathsf{cd}_2(\mathcal{H}) = 4.$$

Proof techniques and lemmas

Techniques

- Combinatorics
- Topological combinatorics

Let $\mathcal H$ be a hypergraph with no singleton. If $\chi(\mathsf{KG}(\mathcal H)) = \mathsf{cd}_2(\mathcal H) = 1$, then any proper coloring of $\mathsf{KG}(\mathcal H)$ with a minimum number of colors contains a monochromatic $K_{1,1}^*$.

Let $\mathcal H$ be a hypergraph with no singleton. If $\chi(\mathsf{KG}(\mathcal H)) = \mathsf{cd}_2(\mathcal H) = \mathsf{1}$, then $\mathsf{KG}(\mathcal H)$ has two non-adjacent vertices.

Case
$$cd_2(\mathcal{H}) = 1$$

Let $\mathcal H$ be a hypergraph with no singleton. If $\chi(\mathsf{KG}(\mathcal H)) = \mathsf{cd}_2(\mathcal H) = \mathsf{1}$, then $\mathsf{KG}(\mathcal H)$ has two non-adjacent vertices.

- $\chi(KG(\mathcal{H})) = 1$ means that any two edges of \mathcal{H} intersect.
- $cd_2(\mathcal{H}) = 1$ implies that there are at least two edges. \square

Let $\mathcal H$ be a hypergraph with no singleton. If $\chi(\mathsf{KG}(\mathcal H)) = \mathsf{cd}_2(\mathcal H) = 2$, then any proper coloring of $\mathsf{KG}(\mathcal H)$ with a minimum number of colors contains a $K_{2,2}^*$ with two colors on each side.

Let \mathcal{H} be a hypergraph with no singleton.

If $\chi(\mathsf{KG}(\mathcal{H})) = \mathsf{cd}_2(\mathcal{H}) = 2$, then $\mathsf{KG}(\mathcal{H})$ has two disjoint edges.

Let \mathcal{H} be a hypergraph with no singleton. If $\chi(\mathsf{KG}(\mathcal{H})) = \mathsf{cd}_2(\mathcal{H}) = 2$, then $\mathsf{KG}(\mathcal{H})$ has two disjoint edges.

The topological method

The topological method in a nutshell

 \exists proper coloring c of G = (V, E) with t colors

 \exists Z_2 -complex L(G) and Z_2 -equivariant map $\phi:$ L(G) $\longrightarrow \mathcal{S}^{f(t)}$.

Obstruction (e.g., the Borsuk-Ulam theorem) \Rightarrow lower bound on t.

Proof (Ziegler 2001, Matoušek 2003) of Dol'nikov's theorem $\chi(KG(\mathcal{H})) \geqslant cd_2(\mathcal{H})$:

$$\exists$$
 simplicial Z_2 -map ϕ : sd $Z_2^{*n} \longrightarrow Z_2^{*(n-\operatorname{cd}_2(\mathcal{H})+t)}$

where $n = |V(\mathcal{H})|$, conclude with Tucker's lemma:

$$n \leqslant n - \operatorname{cd}_2(\mathcal{H}) + t$$
.

$$\mathbf{x} \in \{+, -, 0\}^n \setminus \{\mathbf{0}\} \longmapsto \phi(\mathbf{x}) \in \{\pm 1, \pm 2, \dots, \pm (n - \mathrm{cd}_2(\mathcal{H}) + t)\}$$

$$\mathbf{x}^+ = \{i \in [n] : x_i = +\}$$
 and $\mathbf{x}^- = \{i \in [n] : x_i = -\}$

$$\phi(\mathbf{\textit{x}}) = \left\{ \begin{array}{ll} \pm \left(n - \operatorname{cd}_2(\mathcal{H}) + \max c(\mathcal{S})\right) & \text{for } \mathcal{S} \in E(\mathcal{H}) \text{ and } (\mathcal{S} \subseteq \mathbf{\textit{x}}^+ \text{ or } \mathcal{S} \subseteq \mathbf{\textit{x}}^-) \\ \pm \left(|\mathbf{\textit{x}}^+| + |\mathbf{\textit{x}}^-|\right) & \text{if such } \mathcal{S} \text{ does not exist.} \end{array} \right.$$

Fan's lemma

Replace Tucker's lemma by

Lemma (Fan's lemma)

Let T be a centrally symmetric triangulation of a d-sphere. For every simplicial Z_2 -map $\phi \colon \mathsf{T} \to Z_2^{*\infty}$, there exists an alternating d-simplex.

An alternating simplex has an ordering of its vertices v_0, \ldots, v_d s.t.

$$0 < +\phi(v_0) < -\phi(v_1) < +\phi(v_2) < \cdots < (-1)^d \phi(v_d).$$

Theorem (Fan 1982, Simonyi-Tardos 2006)

There exists a colorful bipartite complete subgraph $K_{\lceil \operatorname{cd}_2(\mathcal{H})/2 \rceil, \lceil \operatorname{cd}_2(\mathcal{H})/2 \rceil}$ in any proper coloring of $\operatorname{KG}(\mathcal{H})$.

Strengthening for graphs with $\chi(KG(\mathcal{H})) = cd_2(\mathcal{H})$ (Spencer-Su 2005, Simonyi-Tardos 2007).

Chen's lemma

Replace Fan's lemma by

Lemma (Chen 2012)

Consider an order-preserving \mathbb{Z}_2 -map $\phi: \{+, -, 0\}^n \setminus \{\mathbf{0}\} \to \{\pm 1, \dots, \pm n\}$. Suppose moreover that there is a $\gamma \in [n]$ such that when $\mathbf{x} \prec \mathbf{y}$, at most one of $|\phi(\mathbf{x})|$ and $|\phi(\mathbf{y})|$ is equal to γ . Then there are two chains

$$\mathbf{x}_1 \preccurlyeq \cdots \preccurlyeq \mathbf{x}_n$$
 and $\mathbf{y}_1 \preccurlyeq \cdots \preccurlyeq \mathbf{y}_n$

such that

$$\phi(\mathbf{x}_i) = (-1)^i i$$
 for all i and $\phi(\mathbf{y}_i) = (-1)^i i$ for $i \neq \gamma$ and such that $\mathbf{x}_{\gamma} = -\mathbf{y}_{\gamma}$.

Proved with the help of Fan's lemma.

Applications and open questions

Circular chromatic number

Graph G = (V, E)

(p,q)-coloring: $c: V \to [p]$ such that $q \le |c(u) - c(v)| \le p - q$ when $uv \in E$.

Circular chromatic number: $\chi_c(G) = \inf\{p/q: \exists (p,q)\text{-coloring}\}.$

Circular chromatic number

Graph
$$G = (V, E)$$

(p,q)-coloring: $c: V \to [p]$ such that $q \le |c(u) - c(v)| \le p - q$ when $uv \in E$.

Circular chromatic number: $\chi_c(G) = \inf\{p/q: \exists (p,q)\text{-coloring}\}.$

Properties.

- The infimum is in fact a minimum.
- $\chi(G) = \lceil \chi_c(G) \rceil$.
- Computing $\chi_c(G)$: NP-hard.

When does $\chi_c(G) = \chi(G)$ hold?

Question that has received a considerable attention (Zhu 2001).

Theorem (Simonyi-Tardos 2006)

 $\chi(G)=\chi_c(G)$ when G is "topologically $\chi(G)$ -chromatic" and $\chi(G)$ is even.

Lemma (Folklore)

If every proper t-coloring of a t-chromatic graph G contains a $K_{t,t}^*$ with all colors on each side, then $\chi(G) = \chi_c(G)$.

Theorem (Alishahi-Hajiabolhassan-M. 2017) If $\chi(KG(\mathcal{H})) = cd_2(\mathcal{H})$, then $\chi(G) = \chi_c(G)$.

Case of KG(n, k): Chen (2012). Partial results by Hajiabolhassan-Zhu (2003), M. (2005). 4日 > 4周 > 4目 > 4目 > 目 めなの

Categorical product

Theorem (Alishahi-Hajiabolhassan-M. 2017)

Let $\mathcal{H}_1, \dots, \mathcal{H}_s$ be hypergraphs with no singleton and such that $\chi(\mathsf{KG}(\mathcal{H}_i)) = \mathsf{cd}_2(\mathcal{H}_i)$ for all i. Let $t = \mathsf{min}_i \, \mathsf{cd}_2(\mathcal{H}_i)$.

Then any proper coloring of $KG(\mathcal{H}_1) \times \cdots \times KG(\mathcal{H}_s)$ with t colors contains a $K_{t,t}^*$ with all colors on each side.

Consequence: for such hypergraphs

$$\chi(\mathsf{KG}(\mathcal{H}_1) \times \cdots \times \mathsf{KG}(\mathcal{H}_s)) = \chi_c(\mathsf{KG}(\mathcal{H}_1) \times \cdots \times \mathsf{KG}(\mathcal{H}_s))$$
$$= \min_i(\chi(\mathsf{KG}(\mathcal{H}_i))) = \min_i(\chi_c(\mathsf{KG}(\mathcal{H}_i))) = \min_i(\mathsf{cd}(\mathcal{H}_i)).$$

They satisfy Hedetniemi's conjecture and Hedetniemi's conjecture for the circular coloring (Zhu 1992).

Examples of hypergraphs \mathcal{H} with $\chi(KG(\mathcal{H})) = cd_2(\mathcal{H})$

Examples of hypergraphs \mathcal{H} for which

$$\chi(\mathsf{KG}(\mathcal{H})) = \mathsf{cd}_2(\mathcal{H}). \tag{*}$$

Let G be a triangle-free graph and choose k ≥ α(G).
 Denote by G(k) the join of G with the disjoint union of k triangles.

Then $\mathcal{H} = G(k)$ satisfies (*).

2. Let *A* and *B* be two disjoint sets, with $|A| \ge 2k - 1$ and $|B| \ge 1$.

Then
$$\mathcal{H} = \binom{A}{k} \cup \{\{i,j\}: i \in A, j \in B\} \cup \binom{B}{k}$$
 satisfies (\star) .

(Example due to Simonyi)

Complexity aspects

These two problems are NP-hard:

- Deciding $\chi(G) = \chi_c(G)$ (Guichard, 1993).
- Deciding $\chi(KG(\mathcal{H})) = cd_2(\mathcal{H})$ (M.-Mizrahi, 2018).

Theorem (Hatami-Tusserkani, 2004)

Deciding $\chi(G) = \chi_c(G)$ remains NP-hard when $\chi(G)$ is known.

What is the complexity of deciding $\chi(KG(\mathcal{H})) = cd_2(\mathcal{H})$ when $\chi(KG(\mathcal{H}))$ is known?

Thank you