Existence results in topological combinatorics with open complexity status

Frédéric Meunier

July 4th, 2022

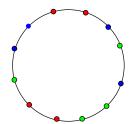
Recent Advances on Total Search Problems

- 1 Independent transversal
- 2 The Győri-Lovász theorem
- 3 Kernels in clique-acyclic perfect digraphs
- 4 Rainbow fractional matchings
- 5 Envy-free cake division
- 6 Large colorful neighborhood in Schrijver graphs
- Summary
- 8 Bibliography

Statement

Theorem Haxell 1995

In a colored graph with maximum degree Δ , there always exists an independent set intersecting every color class of size at least 2Δ .



 2Δ is tight.

Proofs

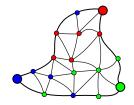
Original proof: based on an alternating path argument ⇒ PLS ?

Short proof (Aharoni, Berger, and Ziv 2007): based on a Sperner-like topological lemma due to Meshulam. ⇒ PPAD?

Meshulam's lemma

Lemma Meshulam 2001

Consider a simplicial complex K with colored vertices. If for any subset C of the colors the corresponding induced subcomplex K[C] is (|C|-2)-connected, then there exists a simplex with all colors.



Non-constructive proof (connectivity...)

Many other "TFNP" applications: colorful Carathéodory, large rainbow matchings, etc.

Known results

Theorem Graf, Haxell 2020

Consider a colored graph G with (fixed) maximum degree Δ . An independent set intersecting every color class of size at least $2\Delta + 1$ can be found in time polynomial in |V(G)|.

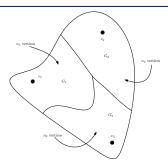
Complexity status completely open for the original version with 2Δ .

- 1 Independent transversal
- 2 The Győri-Lovász theorem
- 3 Kernels in clique-acyclic perfect digraphs
- 4 Rainbow fractional matchings
- 5 Envy-free cake division
- 6 Large colorful neighborhood in Schrijver graphs
- Summary
- 8 Bibliography

Statement

Theorem Győri 1976, Lovász 1977

Let $k\geqslant 2$ be an integer, let G be a k-connected graph on n vertices, let v_1,v_2,\ldots,v_k be distinct vertices of G and let n_1,n_2,\ldots,n_k be positive integers with $n_1+n_2+\cdots+n_k=n$. Then G has disjoint connected subgraphs G_1,G_2,\ldots,G_k such that for $i=1,2,\ldots,k$ the graph G_i has n_i vertices and $v_i\in V(G_i)$.



Proofs

Constructive proof (Győri 1976)

Topological proof (Lovász 1977): based on a homological result ⇒ PPAD ?

The homological result by Lovász

Theorem Lovász 1977

Let D be a digraph with a vertex r that cannot be separated from any other vertex by removing less than $k \ge 2$ vertices. Then we have $\widetilde{H}_i(A, \mathbb{Z}) = 0$ for $i = 0, \dots, k-2$, where A is the "arborescence complex" relative to r.

Known results and questions

Theorem Chandran, Cheung, Issac 2018

Finding the partition of the Győri-Lovász theorem is in PLS.

Proof by an adaptation of the original proof by Győri

Open question Chandran, Cheung, Issac 2018

Is the problem PLS-complete?

The problem is known to be polynomial for k = 2, 3.

Is the problem in PPAD?

- Independent transversal
- 2 The Győri-Lovász theorem
- 3 Kernels in clique-acyclic perfect digraphs
- 4 Rainbow fractional matchings
- 5 Envy-free cake division
- 6 Large colorful neighborhood in Schrijver graphs
- Summary
- 8 Bibliography

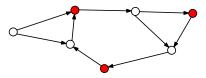
Statement

A simple directed graph is clique-acyclic if every clique is acyclic.

kernel = subset of vertices that is independent and absorbing

Theorem Boros, Gurvich 1996

Every clique-acyclique orientation of a perfect graph has a kernel.



Proofs

All known proofs are topological:

- Original proof: relies on advanced results in game theory (but ultimately on Scarf's lemma?)
- Short proof (Aharoni, Holzman 1998): strong fractional kernels + Scarf's lemma
- Short and simpler proof (Király, Pap 2009): Sperner's lemma applied on the polar of $P = STAB(G) \mathbb{R}^n_+$

 \Longrightarrow PPAD ?

Issues: Scarf's lemma and P use matrices with rows indexed by all (maximal) cliques

Strong fractional kernels

Let D = (V, A) be a digraph.

strong fractional kernel $= f: V \to \mathbb{R}_+$ s.t.

- for each clique K, we have $\sum_{u \in K} f(u) \leqslant 1$ (fractional independence)
- for each vertex v, there is a clique $K \subseteq N^+[v]$ with $\sum_{u \in K} f(u) \geqslant 1$ (strong fractional absorbance)

Theorem Aharoni, Holzman 1998

Every clique acyclic orientation of a simple digraph has a strong fractional kernel.

Known result

Theorem Kintali et al. 2013

Finding a strong fractional kernel is PPAD-hard.

Proof by reduction from Preference Game, itself being reduced from 3-D Brouwer

The problem of finding a kernel in a perfect graph is in TFNP. Is it in PPAD?

Theorem Ayumi, M., Pass-Lanneau 2020

Finding a kernel in a claw-free perfect graph can be done in polynomial time.

- Independent transversal
- 2 The Győri-Lovász theorem
- Kernels in clique-acyclic perfect digraphs
- 4 Rainbow fractional matchings
- **5** Envy-free cake division
- 6 Large colorful neighborhood in Schrijver graphs
- Summary
- 8 Bibliography

Statement

Let G = (V, E) be a graph.

A fractional matching for $F \subseteq E$ is a map $f: F \to \mathbb{R}_+$ s.t. $\sum_{e \in \delta(v) \cap F} f(e) \leqslant 1$.

size of a fractional matching $=\sum_{e\in F}f(e)$

 $\nu^*(F) = \text{maximal size of a fractional matching for } F$

rainbow fractional matching = fractional matching whose support intersects each E_i at most once

Theorem Aharoni, Holzman, Jiang 2019

Let n be an integer or half-integer. Every partition E_1, \ldots, E_{2n} of the edges such that $\nu^*(E_i) \ge n$ for all i has a rainbow fractional matching of size n.

Proof

The proof uses the following topological result.

d-Leray = trivial homology over \mathbb{Q} in dimension d and above

Theorem Kalai, Meshulam 2005

Let K be a d-Leray simplicial complex and let M be a matroid with rank function ρ , both on the same vertex set V. If M is a subcomplex of K, then there exists $\tau \in K$ such that $\rho(V \setminus \tau) \leqslant d$.

\Longrightarrow PPAD ?

Many other "TFNP" applications: colorful results in discrete geometry, rainbow matchings, intersection matroids and oriented matroids, etc.

- Independent transversal
- 2 The Győri-Lovász theorem
- 3 Kernels in clique-acyclic perfect digraphs
- 4 Rainbow fractional matchings
- **5** Envy-free cake division
- 6 Large colorful neighborhood in Schrijver graphs
- Summary
- 8 Bibliography

Statement: good

Players dividing a cake, with closed preferences: the "limit" of a sequence preferred parts is also preferred.

Cake identified with [0,1]; parts identified with subintervals.

Theorem Stromquist 1980, Woodall 1980

No matter how many players there are, if the cake is good, then there is always an envy-free division.

Statement: bad and mixed

Theorem Su 1999

No matter how many players there are, if the cake is bad, then there is always an envy-free division.

Theorem Avvakumov, Karasev 2021

Suppose that the number of players is a prime power. Then there is always an envy-free division. (No assumption on the cake.)

case with three players proved by Segal-Halevi (2018), with a prime number of players proved by M., Zerbib (2019)

Proofs

Original proof for good cakes: Brouwer fixed point

Elementary proof for good/bad cakes (Su 1999): Sperner's lemma

⇒ PPAD

Original proofs for "mixed" cakes: degree argument (involved) Shorter proof for "mixed" cakes (Jojić, Panina, Živaljević 2019): Volovikov's theorem

Known results for good/bad cakes

Theorem Deng, Qi, Saberi 2012

Envy-free division of a good cake is PPAD-complete when the (fixed) number of players is at least three.

(Model: preferences given by polynomial time functions)

Under Lipschitz assumption, FPTAS for three players

Volovikov's theorem

Theorem Volovikov 1996

Let G be the additive group $((\mathbb{Z}_p)^k, +)$ and let X and Y be two topological spaces on which G acts in a fixed-point free way. If X is G-connected and Y is a G-dimensional sphere, then there is no G-equivariant map $X \to Y$.

$$\Longrightarrow \mathsf{PPA}\text{-}p^k$$
 ?

Issue (?):

- PPA- $p^k = PPA-p$ (Hollender (2021))
- there is a version of Dold's theorem that is PPA-p-complete
- Dold's theorem enough to prove envy-free cake division in the mixed case?

Equipartition of a segment

$$\mathcal{I} = \{[a, b) \colon 0 \leqslant a \leqslant b \leqslant 1\}.$$

Theorem Avvakumov and Karasev 2022

Let $f:\mathcal{I}\to\mathbb{R}$ be a continuous map such that $f(\varnothing)=0$ for all $a\in[0,1]$. Then for every positive integer n, there exist $0\leqslant x_1\leqslant\cdots\leqslant x_{n-1}\leqslant 1$ such that

$$f([0,x_1)) = f([x_1,x_2)) = \cdots = f([x_{n-1},1]).$$

In other words: existence of envy-free division when simultaneously

- the players have the same preferences.
- the preferences are obtained by "weighing" the pieces.

In
$$\bigcap_{p \text{ prime divisor of } n} PPA-p$$
?

Is it a hard problem?

- Independent transversal
- 2 The Győri-Lovász theorem
- 3 Kernels in clique-acyclic perfect digraphs
- 4 Rainbow fractional matchings
- **5** Envy-free cake division
- 6 Large colorful neighborhood in Schrijver graphs
- Summary
- 8 Bibliography

Statement

subset S of [n] is 2-stable = it does not contain adjacent elements (1 and n being also adjacent).

For $n \ge 2k$, the Schrijver graph SG(n, k) has the 2-stable k-subsets of [n] as vertex set; its edges connect disjoint vertices.

Theorem Simonyi, Tardos, Vrećica 2009

In any proper coloring of SG(n, k), there is a vertex with at least $\lfloor n/2 \rfloor - k + 3$ colors in its closed neighborhood.

Remarks:

- $\lceil n/2 \rceil k + 2$ results from standard techniques
- formulated in general in terms of the local chromatic number

Proof

As (almost) always for colorings of Schrijver graphs, the proof is topological.

Uses the following result.

Theorem Ščepin 1974

For every map $f \colon S^{2t} \to K$ to some simplicial complex K of dimension t, there exists $x \in S^{2t}$ so that f(-x) = f(x).

Simpler proof by Vrećica (2018).

Might show that finding a "large" colorful neighborhood in a Schrijver graph belongs to PPA.

(Model: colors given by a polynomial time function)

- Independent transversal
- 2 The Győri-Lovász theorem
- 3 Kernels in clique-acyclic perfect digraphs
- 4 Rainbow fractional matchings
- **5** Envy-free cake division
- 6 Large colorful neighborhood in Schrijver graphs
- **7** Summary
- 8 Bibliography

Summary

- Independent transversal: in PLS? in PPAD? Hard problem?
- Győri–Lovász theorem: in PPAD? PLS-complete?
- Kernels in clique-acyclic perfect digraphs: in PPAD? Hard problem?
- Rainbow fractional matchings: in PPAD? Hard problem?
- Envy-free cake-cutting, mixed case: in PPA-p?
- Equipartition of a segment: in $\bigcap_{p} PPA-p$? Hard problem?
- Large colorful neighborhood in Schrijver graphs: PPA? Hard problem?

- 1 Independent transversal
- 2 The Győri-Lovász theorem
- 3 Kernels in clique-acyclic perfect digraphs
- 4 Rainbow fractional matchings
- **5** Envy-free cake division
- 6 Large colorful neighborhood in Schrijver graphs
- Summary
- 8 Bibliography

Ron Aharoni, Eli Berger, and Ran Ziv, *Independent systems of representatives in weighted graphs*, Combinatorica **27** (2007), no. 3, 253–267.

R Aharoni and R Holzman, Fractional kernels in digraphs, J. Combinatorial Theory Series B **73** (1998), 1–6.

Ron Aharoni, Ron Holzman, and Zilin Jiang, *Rainbow fractional matchings*, Combinatorica **39** (2019), no. 6, 1191–1202.

Sergey Avvakumov and Roman Karasev, *Equipartition of a segment*, Mathematics of Operations Research (2022).

Endre Boros and Vladimir Gurvich, *Perfect graphs are kernel solvable*, Discrete Mathematics **159** (1996), no. 1-3, 35-55.

L Sunil Chandran, Yun Kuen Cheung, and Davis Issac, *Spanning tree congestion and computation of generalized györi-lovász partition*, 45th International Colloquium on Automata, Languages, and Programming, Schloss Dagstuhl, 2018, pp. 1–14.

Xiaotie Deng, Qi Qi, and Amin Saberi, Algorithmic solutions for envy-free cake cutting, Operations Research **60** (2012), no. 6, 1461–1476.

Aris Filos-Ratsikas, Alexandros Hollender, Katerina Sotiraki, and Manolis Zampetakis, *A topological characterization of modulo-p arguments and implications for necklace splitting*, SODA, 2021, pp. 2615–2634.

Penny Haxell, *A condition for matchability in hypergraphs*, Graphs and Combinatorics 11 (1995), no. 3, 245–248.

Alexandros Hollender, *The classes ppa-k: Existence from arguments modulo k*, Theoretical Computer Science **885** (2021), 15–29.

Duško Jojić, Gaiane Panina, and Rade Živaljević, *Splitting necklaces, with constraints*, SIAM Journal on Discrete Mathematics **35** (2021), no. 2, 1268–1286.

Gil Kalai and Roy Meshulam, *A topological colorful helly theorem*, Advances in Mathematics **191** (2005), no. 2, 305–311.

Tamás Király and Júlia Pap, *A note on kernels and sperner?s lemma*, Discrete Applied Mathematics **157** (2009), no. 15, 3327–3331.

Shiva Kintali, Laura J Poplawski, Rajmohan Rajaraman, Ravi Sundaram, and Shang-Hua Teng, *Reducibility among fractional stability problems*, SIAM Journal on Computing **42** (2013), no. 6, 2063–2113.

László Lovász, *A homology theory for spanning tress of a graph*, Acta Mathematica Hungarica **30** (1977), no. 3-4, 241–251.

Adèle Pass-Lanneau, Ayumi Igarashi, and Frédéric Meunier, *Perfect graphs with polynomially computable kernels*, Discrete Applied Mathematics **272** (2020), 69–74.

Erel Segal-Halevi, Fairly dividing a cake after some parts were burnt in the oven, AAMAS, 2018, pp. 1276–1284.

Evgeny Vital'evich Shchepin, On a problem of la tumarkin, Doklady Akademii Nauk, vol. 217, Russian Academy of Sciences, 1974, pp. 42–43.

Walter Stromquist, *How to cut a cake fairly*, The American Mathematical Monthly **87** (1980), no. 8, 640–644.

Gábor Simonyi, Gábor Tardos, and Siniša Vrećica, Local chromatic number and distinguishing the strength of topological obstructions, Transactions of the American Mathematical Society 361 (2009), no. 2, 889–908.

Francis E Su, *Rental harmony: Sperner's lemma in fair division*, The American Mathematical Monthly **106** (1999), no. 10, 930–942.

Alexey Y Volovikov, On a topological generalization of the Tverberg theorem, Mathematical Notes **59** (1996), no. 3, 324–326.

Sinisa T Vrecica, On perles' question, arXiv preprint math/0602419 (2006).

Douglas R Woodall, *Dividing a cake fairly*, Journal of Mathematical Analysis and Applications **78** (1980), no. 1, 233–247.

THANK YOU