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Managing the network at European scale
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An energy production and transport optimization problem on a grid
modeling energy exchange across European countries.
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e Stochastic dynamical problem

e Discrete time formulation (weekly time steps)
e Large-scale problem (8 countries)

1But the framework remains valid for smaller energy management problems.
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Modeling



Production at each node of the grid

At each node /i of the grid, we formulate a production problem on a
discrete time horizon [0, T, involving the following variables at each

time t:
Xi
° Xi: state variable
[Qa (dam volume)
¢ e Ui: control variable
Ui - @ (energy production)
Fi o Fi: grid flow
\Qf (import/export from the grid)
° W’t noise
(consumption, renewable)
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ng the problem for each node

For each node i € [1, N]:

e The dynamics x; ; = f/(x{, u, w{) writes
i ) i i i
Xepp =X+ @ — Py — 5 .
~~ ~~ ~~

inflow  turbinate  spillage

e The load balance (supply = demand) gives

i i i i i

pr + & + r + fi = d
~~ ~~~ ~~ ~~ ~~
turbinate  thermal  recourse  grid flow demand
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ing the problem for each node

For each node i € [1, N]:
e The dynamics x,; = £ (x{, ul, w}) writes
i i i i
Xey1 =X+ A — Py~ S
~— ~—

inflow  turbinate  spillage

e The load balance (supply = demand) gives

i i i i i

pr + & + r + fi = d
~~ ~~~ ~~ ~~ ~~
turbinate  thermal  recourse  grid flow demand

Thus, we explicit w; and ui
th - (altv dL{) ) U; - (p;tvs{‘vgl{v rtl) o
We pay to use the thermal power plant and we penalize the recourse:
Ly(x, up £l we) = on(gl) + Bige + kury
—_—— ~—~

uadratic cost recourse penalt
q penalty 6/32



A stochastic optimization problem decoupled in space

At each node i of the grid, we have to solve a stochastic optimal control
subproblem depending on the grid flow process F':2

T—
51F) = i, B LK UL WL0) + K(K).

—-

s.t. Xlt+1 = ftl(X;r’ U, F’t7W’t+1) )
. - ad . - ad
X, € X, U, U,

Uij]:t7

The last equation is the measurability constraint, where F; is
the o-field generated by the noises {W;}Tzlmt,,-:l___,\, up to time t.

2The notation Jf33[] means that the argument of stg is a random variable.
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Modeling exchanges between countries

The grid is represented by a directed graph G = (N, . A). At each time
t €0, T — 1] we have:

e a flow Q7 through each arc a,
inducing a cost ¢7(Q7?),
modeling the exchange between

Fi two countries

e a grid flow Fi at each node i,
resulting from the balance
Q2 equation

Fi= > Q- > @

acinput(i) beoutput(i)

8/32



A transport cost decoupled in time

At each time step t € [0, T — 1] , we define the transport cost as the
sum of the cost of the flows QZ through the arcs a of the grid:

JeaQ] =E( Y (@) .

ac A

where the ¢?'s are easy to compute functions (say quadratic).

Kirchhoff’s law

The balance equation stating the conservation between Q, and F,
rewrites in the following matrix form:

AQ,+F,=0,

where A is the node-arc incidence matrix of the grid.
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The overall production transport problem

The production cost Jy aggregates the costs at all nodes i:
Jp[F] =) JylFT,
ieEN
and the transport cost Jz aggregates the costs at all time t:

T-1

J£[Q] =) J=[Q,]
t=0

The compact production-transport problem formulation writes:

min JylF]+ Jz(Q) (P)

st. AQ+F=0.
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Resolution methods



Where are we heading to?

The problem P has:

e N nodes (with N = 8);
e T time steps (with T = 52);
e /N independent random variables per time step t: W%, e ,Wiv.

We aim to solve the problem numerically. We suppose that for all t,
W’t is a discrete random variable, with support size np;,. We denote by

Wt:(wb... 7w£V)7

the global random variable at time t.
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First idea: solving the whole problem inplace!

Write the problem and solve it!
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First idea: solving the whole problem inplace!

Write the problem and solve it!

But ...

e N =8 nodes and T = 52 time steps.

e Non-anticipativity constraint: we ought to formulate
the problem on a tree (Stochastic Programming approach)
e We suppose that W1, - - ,W{V are space independent. The support size of W, is
equal to ngll.n
number of nodes oc  (nh, )7
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First idea: solving the whole problem inplace!

Write the problem and solve it!

But ...

e N =8 nodes and T = 52 time steps.

e Non-anticipativity constraint: we ought to formulate
the problem on a tree (Stochastic Programming approach)
e We suppose that W1, - - ,W{V are space independent. The support size of W, is
equal to ngll.n
number of nodes oc  (nh, )7

Npin 1 2 5

nleafs 1 =~ 10%° =~ 1029
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Second idea: Dynamic Programming

We assume that the noise W, --- , W are independent.
We decompose the problem time step by time step — T subproblems

A0
- v V. Vs | (vr)
» @—@—© ®
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Second idea: Dynamic Programming

We assume that the noise W, --- , W are independent.
We decompose the problem time step by time step — T subproblems

We use Dynamic Programming to compute the

value functions Vq,---, V.

But ...

e N nodes: curse of dimensionality (8 decoupled stocks dynamics).

e Still a support size n}y, for W,

We use Stochastic Dual Dynamic Programming to solve the problem
with N = 8 dimensions.
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A brief recall on Sto i amic Programming

Dynamic Programming
We compute value functions with the backward equation:

Vr(x) = K(x)

Ve(xe) = minE[ Le(xe, e, Weg) + Vira (£, ur, We ) ) |
t
—_—————

current cost

future costs

Stochastic Dual Dynamic Programming

e Convex value functions V; are approximated as a

supremum of a finite set of affine functions

e Affine functions (=cuts) are computed during
forward/backward passes, till convergence

Vi(x) = 121ka<xK{)\’;x + ,Bf} < Ve(x)

e SDDP makes an extensive use of LP/QP solver
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future costs

Stochastic Dual Dynamic Programming

e Convex value functions V; are approximated as a
supremum of a finite set of affine functions

e Affine functions (=cuts) are computed during
forward/backward passes, till convergence

Vi(x) = 121ka<xK{)\’;x + ,Bf} < Ve(x)

e SDDP makes an extensive use of LP/QP solver

N

However, SDDP still has to deal with a noise W, with a support size n; ...
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Introducing decentralized decomposition methods

min S [FISS Q] (P)

st. AQ+F =0

4
(p—a
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Introducing decentralized decomposition methods

min S [FISS Q] (P)

st. AQ+F=0 ~_X .

price

Once the price A is fixed, we can decompose
the problem P in 3 independent subproblems

Pr,---, Ps.
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Introducing decentralized decomposition methods

min S [FISS Q] (P)

st. AQ+F=0 ~_X .

price

Once the price A is fixed, we can decompose
the problem P in 3 independent subproblems

Pr,---, Ps.

Dual decomposition:
e Fix a voltage A(K)
e Decouple the problem node by node

e Solve Py, -, P3 by Dynamic Programming
and get an outflow F

e Solve transport problem and get flow Q
e Update A\ with:
A = A 4 % (AQ +F)
N——

=0 if equilibrium
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Recalling the original problem

rglp Jy[F] + J=[Q] (P)

st. AQ+F=0.
where

o Jp(F) =L, Jiy(F) with
T-1

ByIFT = min B (37 LKL UL FL W) + KX
X'y’ =0
s.t. lot of constraints
e F=F, --- F._, isa process,

e s0isQ=Q,, - ,Qr_;.

~» \ appears to be also a time process ...
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Decomposition appears more complicated than expected

A0 = (/\ﬁ“,/\(j), e ,)x(Tk)) is a processus,
correlated in time:

{f|f < (W, --- 7Wt)} ° /\(tk) depends on past history

A9 = B (W, -+, W,)...

o ... and \¥) is a "noise” in the
subproblems Py, --- | Py
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Decomposition appears more complicated than expected

AR = (/\(1“,/\5“7 A ,)x(Tk)) is a processus,
correlated in time:

{f|f < o(Wp, - -- 7Wt)} ° /\(tk) depends on past history

A9 = B (W, -+, W,)...

o ... and \¥) is a "noise” in the
subproblems Py, --- | Py

We use a relaxation to overcome this issue:

e We introduce an information process Y.,
whose dynamics is known

e We approximate /\(tk) by its conditional
expectation w.r.t. Y,

0 =EOWY,)
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Price decomposition

The production and transport optimization problem writes
rgiP Jyp[F] + J=[Q] st. AQ+F=0. (P)

The decomposition scheme consists in:

1. dualizing the constraint,

2. approximating the multiplier A by its conditional expectation w.r.t. Y.

This trick leads to the following problem

max rgllg Jp[Fl+ J=[Q] + (E(X | Y),AQ +F) .
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A dual gradient-like algorithm

Applying the Uzawa algorithm to the dual problem
max min Jp[F1+ J=[Q] +(E(A | Y),AQ +F),

leads to a decomposition between production and transport:

F € arg min Jp[F] + (E(A® | Y) ,F), Production
F

Q¥ ¢ argmin J=[Q] + (E (A(k) ! Y).AQ), Transport
Q

EA*D | Y) =EQAY | Y) + pE(AQ¥ + F*D | ¥) . Update
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Decomposing the production problem

The production subproblem
' (k)
min Jp[Fl+(EXW | Y) F),
evidently decomposes node by node

min S [F] + (E(A"® | Y)  F) |
FI

hence a stochastic optimal control subproblem for each node i:

T—1
min B 3 (LK UL FL W) + (B | Y0 D) + kX))
X' u' F! —0
s.t. Xi+]_ - ft’(xi‘: U;:: Flt7 Wt+l)
U, < F .
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Solving the production subproblems by DP

Assuming that

e the process W is a white noise,
e the process Y follows a dynamics Y, ; = h(Y,, W, ),

Then (X,,Y,) is a valid state to apply Dynamic Programming:
Vr(x,y) = K'(x)
Vti(x,y) = mifn E(Li(x, u, FL,W, 1)
+(EAL | Y= y) )+ Vi (K, Yerr))
SHES i+1 — ﬂi(xz u, f7 Wt+1) )

Yo = he(y, W) .
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Where are we heading to?

e Solving directly the problem is not numerically tractable

e SDDP allows to solve the problem, but still has to deal with a noise
W, with size njY, ...

e Price decomposition allows to decompose the problem in N

independent subproblems

Now, we aim to compare numerically SDDP and DADP.
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Numerical implementation




Our stack is deeply rooted in Julia language

e Modeling Language: JuMP

e Open-source SDDP Solver:
StochDynamicProgramming. j1

e LP/QP Solver: Gurobi 7.02

https://github.com/JulialOpt/StochDynamicProgramming. j1
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https://github.com/JuliaOpt/StochDynamicProgramming.jl

Implementation of SDDP and DADP

e Implementing SDDP is straightforward
(but still a noise W, with size nj). ...)
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Implementation of SDDP and DADP

e Implementing SDDP is straightforward
(but still a noise W, with size nj). ...)

e DADP is more elaborated. The difficulty lies in the update scheme:
EAKD 1Y) =EAW | Y) + p E(AQKHY + FkHD) | ) |

We use a crude relaxation: Y = 0. Denoting A(k) = ]E()\(k)),
the update becomes
A —p0 B (AQUKY 4 FHD)

~—
Update step Monte Carlo
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Implementing gradient ascent

e Gradient ascent is too slow ...
e We try to implement accelerated gradient ascent3 but ...

e Unfortunately, we do not know the Lipschitz constant of the
derivative!
e The line-search kills the performance of gradient ascent...

3described in the seminal paper of Nesterov
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Implementing gradient ascent

e Gradient ascent is too slow ...
e We try to implement accelerated gradient ascent3 but ...

e Unfortunately, we do not know the Lipschitz constant of the
derivative!
e The line-search kills the performance of gradient ascent...

To overcome this issue, we use Quasi-Newton (BFGS): the update
becomes

AR = 2 4 R () fE{AQ(kH) + |:(k+1)} )
e We exploit the strong-convexity,

e The line-search is penalized by inexact gradient
(especially near convergence where the algorithm requires precision)

3described in the seminal paper of Nesterov
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Adding an augmented Lagrangian

Let first introduce the augmented Lagrangian corresponding to the
relaxed problem:

L(F,Q,A) = Jp(F)+Jc(Q)+ (A, E(AQ+F|Y))+2 I AQ +FIY)|® .
If a saddle point exists, the problem is equivalent to:

max min L(F,Q,\).
A FQ
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Adding an augmented Lagrangian

Let first introduce the augmented Lagrangian corresponding to the
relaxed problem:

L(F,Q,A) = Jp(F)+Jc(Q)+ (A, E(AQ+F|Y))+2 I AQ +FIY)|® .
If a saddle point exists, the problem is equivalent to:

max min L(F,Q,\).
A FQ

ADMM solves iteratively the subproblems Jy and Jz, and updates the
multiplier A with a constant step-size p:

2
F-1) = arg min Jp(F) + <)\(k) JF) + L HE(AQ(’()) TF FH
F

QU = argmin J=(Q) + (A, 4Q) +2 4@ +E(F k+1>)H

)\(k+1) — A(k) + p]E(AQ(kJrl) + F(k+1)) )
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Double, double toil and trouble

Digesting the stochastic caldron, between time and space ...
e Global problem P

_sros ] Ao | | sl

»

st. AQ+F=0.

e Decomposed production
subproblem P;

D/

DP

min Jsgy (F) + (AP (0 gl
m

e DP subproblem V/

Vi G, y) = min E(Lfx, u, £, Weyq)
.

QP +E®GPHE v =)0t Vi (X, Y:+1))

:
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SDDP convergence
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Figure 1: Convergence of SDDP’s upper and lower bounds (T = 52, npj, = 2).
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Multipliers convergence
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Figure 2: Convergence of multipliers with BFGS (T = 52, npi, = 2).
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ADMM convergence
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Figure 3: Convergence of ADMM, plotting the logarithm of the norm of the

primal residual (T = 52, npin = 2). 30/32



Results — Weekly time steps

Compute Bellman value functions at weekly time steps (T = 52).

Mpin 1 2 5)

SDDP value 9.396 9.687 +o0
SDDP time 8" 928" +o00
BFGS value 9.411 9.687 9.974
BFGS time 69" 157" 575"
ADMM value 9.404 9.682 9.984
ADMM time 65" 326" 643"

e SDDP does not converge if npi, = 5.
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Results — Weekly time steps

Compute Bellman value functions at weekly time steps (T = 52).

Mpin 1 2 5)

SDDP value 9.396 9.687 +o0
SDDP time 8" 928" +o00
BFGS value 9.411 9.687 9.974
BFGS time 69" 157" 575"
ADMM value 9.404 9.682 9.984
ADMM time 65" 326" 643"

e SDDP does not converge if npi, = 5.

e If npj, = 1, results of SDDP, BFGS and ADMM are almost equivalent.
e BFGS and ADMM compute a gradient with Monte-Carlo ...

e Here, BFGS is penalized by line-search, and stops

earlier if no search direction is found.
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Conclusion




Conclusion

Conclusion
e A survey of different algorithms, mixing spatial
and time decomposition.
e DADP works well with the crude relaxation Y = 0.
e SDDP does not converge in a finite time if ng;, = 5.

e We had a lot of troubles to deal with approximate gradients!
Perspectives

e Find a proper information process Y.
e Improve the integration between SDDP and DADP.

e Test other decomposition schemes (by quantity, by prediction).
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SGD convergence

Plotting the convergence with T = 52 and ny;, = 2.
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