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Inventory Routing Problem (IRP)
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Inventory Routing Problem (IRP)

Find

a distribution plan over a
planning horizon

that minimizes

routing costs

and inventory holding
costs




Literature: exact approaches

Branch-and-cut algorithms

o Coelho, Cordeau, Laporte (2012), C&OR, (2012), TRC

o Adulyasak, Cordeau, Jans (2012), 1JC

o Coelho, Laporte (2013), C&OR, (2013) UPR, (2014) IJPE
o Archetti, Bianchessi, Irnich, Speranza, ITOR (2014)

o Avella, Boccia, Wolsey (2015), Networks, (2018), TS

o Manousakis, Repoussis, Zachariadis, Tarantilis (2021) EJOR

Branch-and-price algorithms

o Desaulniers, Rakke, Coelho, (2015) TS
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Literature: aggregated vs.
disaggregated formulations

Aggregated formulations: no vehicle index
o Adulyasak, Cordeau, Jans (2012), 1JC

o Archetti, Bianchessi, Irnich, Speranza, ITOR (2014)
o Avella, Boccia, Wolsey (2015), Networks, (2018), TS

o Manousakis, Repoussis, Zachariadis, Tarantilis

(2021) EJOR

Disaggregated formulations: vehicle index

o Coelho, Cordeau, Laporte (2012), C&OR, (2012), TRC

o Coelho, Laporte (2013), C&OR, (2013) IJPR, (2014)

lJPE

o Archetti, Bianchessi, Irnich, Speranza, ITOR (2014)
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IRP formal definition

o Directed complete graph G=(N,A), where N= 0 (supplier, depot)U N’ (customers)
Qo ncustomers

o T set of time periods {1,...,H}, H horizon

o Fleet K of m homogeneous vehicles with capacity Q

a Production rate at the supplier r,

a Daily demand at the customers r;,

o Maximum inventory level at customers U,

o Initial inventory level I,

o Split deliveries are not allowed

0 Routing cost ¢;that satisfy triangle inequality

o Inventory cost at customers and supplier h;
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IRP formal definition

Find the distribution plan:

Delivery schedule

Routing

Minimizing the total cost: routing + inventory
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Polyhedral projection and equivalent
formulations

Given a MIP formulation A, by P, we denote the polyhedron of its LP relaxation

in which discrete variables are replaced by continuous ones. Given a formulation A
in the extended space of (x; g) variables, its natural projection into the space of x

variables, is

Proj.(Pa) = {z | (z,9) € Pa}

Given two MIP formulations, A and B, we say that A is at least as strong as B if for
any problem instance, the value of the LP-relaxation of the formulation A is at least

as good as the value of the LP-relaxation of the formulation B
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Aggregated formulations

Variables

a /!: continuous inventory variables

a Q/: continuous quantity variables

a Z': binary visiting variables associated with customers

a Z,": integer variables counting the number of routes performed at time t

0 X;': binary routing variables
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Aggregated formulations

min Z holo: + Z Z Rl + Z Z cul Objective function

tel’ ieN' teT (4,j)€A teT
it Ios = I{}._f.—l + Tot — Z Qi teT
'iEJN"r
Ly =13 1 — 1y + Q; ieN. teT Inventory coinstraints where
. E H
(A) Q: LU —lg 4 ieN,teT C’f = 111111{[.&.@.2 rir }
=t

Qx<Cz deN,seT

X'o% (1)) = X (6 (3)) ie N, teT
X'~ (1)=2; ieN,teT

Z;€{0,1} ieN, teT
Zedb .| K} 12T
X;;€{0,1} {ij}eA teT
Qt>0,I, >0 4eN,teT

Variables domain
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Aggregated formulations

Formulation A may give infeasible solutions because of:

o Capacity constraints

o Connectivity constraints




Capacity constraints

Compact formulation: Load-based formulation (LOAD)

a [;: continuous load variables measuring the load of the vehicle while traversing the arc (i; j) in day ¢
CR e i B 11§ =£ 0,
o) - BEHE) =4 A, T

—Y e @ Hi=0

Hg{%ggxg (.,7) € A,t €T (2b)

teN,teT (2a)

Constraints (2) guarantee capacity and connectivity constraints

-

Formulation (A) + (2) is a valid IRP formulation (LOAD)
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Capacity constraints

Exponential formulation: Fractional Capacity Cuts (FCC)

X6 (S)) gég(b’) SCN,teT or M({r[.&;})z@cg*{ﬁ) SCN,teT

FCC guarantee capacity and connectivity constraints

-

Formulation (A) + FCC is a valid IRP formulation (A+FCC)
£




Comparison between LOAD and
A+FCC

Theorem

There is a one-to-one correspondence between solutions of the LP-relaxation of the

LOAD and the solutions of the LP-relaxation of A+FCC:

Projz.ox)(PLoap) = Pat+rcc.

This result is in-line with what is known for the capacitated VRP (Gouveia, 1995 EJOR)




Comparison between LOAD and
A+FCC

> LOAD and A+FCC give the same value of LP relaxation

> LOAD is compact: does not require any dynamic separation

> No B&C needed for LOAD, contrary to A+FCC

> Commercial solvers typically behave better on complete compact formulations:

> automated cuts are disabled when using callbacks

> Generic heuristics work better on complete formulations
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Strengthened Load-Based Formulation
and Multi-Star Inequalities for the IRP

Lemma

When input parameters (Q, r; U) take on integer values, then there exists

an optimal solution such that the values of the quantities Q;are integer




Strengthened Load-Based Formulation
(SLOAD)

The LOAD formulation can be strengthened by replacing constraints (2)

with the following ones:

X, 28, S(@=1X: djeEN LT (14a)
et — () FEN.1ET (14D)
Xo; < Co; <QXy;, JEN,1eT (14¢)




Multi-Star Inequalities for the IRP

Definition

Let us considerasetSE€ N andt € T. Then:

QX' 07(S)) = Q*(S) + X*(S°: S) + X*(S : §°)

are called IRP-Multi-Star inequalities (MS). They strenghten the FCC

through the second and third term of the RHS




Comparison between SLOAD and
A+MS

Theorem

There is a one-to-one correspondence between solutions of the LP-relaxation of

the SLOAD and the solutions of the LP-relaxation of A+MS:

Projzo.x)(Psroap) = Paywms.

Same observations as for LOAD and A+FCC...

LSSEC
BUSINESS SCHOOL




Connectivity constraints

Connectivity is guaranteed through the formulations seen earlier
HOWEVER

One may add connectivity constraints that are not implied by the
former capacity/MS constraints and, thus, may strengthen the value

of the relaxation




Connectivity constraints

Compact formulation: Multi-Commodity Flow (MCF)

uf,-j“: continuous flow variables representing the path from the depot to

customer /inday t

Zt  ifi=l,
FUS— (1) — FIUST(1) = { 7t ifi=0, LleN',ieN,teT (16a)
0 otherwise.
0< fi < X, le N',(i,7) € A, t e T(16b)
E
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Connectivity constraints

Exponential formulation: Generalized Subtour Elimination

Constraints (GSEC)

XHAS)) < ZHS\5h) ST, |5 =2 ieS tel




Comparison between LOAD+MCF and
A+FCC+GSEC

Theorem

There is a one-to-one correspondence between solutions of the LP-relaxation of

the LOAD+MCF and the solutions of the LP-relaxation of A+FCC+GSEC:

Projx,z,0)(Proap+mcr) = Parrocorcsec.

Same observations as for LOAD and A+FCC...
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Hierarchy of aggregated formulations

[SL(_)AD ‘MCF <« A-+MS-+GSEC ]

N

[L(_')AD tMCF & A+FCCH GSE(T‘-] [SLOAD < A }IS]

T~

[L(_’JAD o A FC-(;'.‘-]

A —> B: A is at least as strong as B in terms of linear relaxation




Disaggregated formulations

Variables

o /f: continuous inventory variables
o g/t continuous quantity variables

a zX: binary visiting variables associated with customers and depot

kt. i : :
o x;/: binary routing variables




Disaggregated formulations

min Yy holo+ Y Y halut ) > D eyl Objective function
teT ieN' teT keK (i,j)eA teT
s. 1. I = Ig‘t_l +—Tot — L L qﬁ tel
keK ieN'
Ip =Ty 1 —ras + Z qff ie N.teT
keK
(D) Zﬁ’ﬁ <U-—I,, ieN. teT Inventory coinstraints where

ke K
0< g <O ieN keK teT

ZQitEQ:’(} keK, teT
e N/

Capacity coinstraints

Y H<1 ieN,teT
keK

No-split coinstraints

(6 (i) =z(6({)) ‘€N, keK, teT
20O () =2" ieN keK teT

Routing coinstraints

e {0,1} 4ieN, kekK, teT
e {01} (i.j)eA keK. teT
Ii»0 ieN,teT

Variables domain
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Disaggregated formulations

Formulation D may give infeasible solutions because of:

o Connectivity constraints




Disaggregated connectivity constraints

Connectivity constraints may be imposed through

a Disaggregated GSECs (dGSECs)

#(A(S)) € E\iD) SeN,ies teT, keXK

a Disaggregated FCC (dFCC)




Strength of the disaggregated
formulations

Theorem

There is a one-to-one correspondence between solutions of the LP-relaxation of

the D+FCC+GSEC and the solutions of the LP-relaxation of A+FCC+GSEC:

Projz o x)(Pp+rcoc+esec) = Patrco+GsEc

Nothing is gained through disaggregation!
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Main conclusions from theoretical
analysis

o Compact formulations are as strong as exponential ones

o Aggregated formulations are as strong as disaggregated

formulations




Computational analysis

o Aims at verifying the computational efficacy of the aggregated formulations

o Comparison with state-of-the-art approaches:

o B&C algorithm from Coelho and Laporte (2014) JPE - CL.:

Disaggregated formulation
GSECs separated dynamically

Complete UNDIRECTED graph

o B&P algorithm from Desaulniers, Rakke, Coelho, (2015) TS — DRC:

Set-partitioning formulation

Column generation with complex set of domination rules
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Computational tests: instances

Benchmark IRP instances:
oan=5-50

aH=3,6

am=2-5

0 Low & High inv. Costs

640 instances




Solution approaches

o Compact: SLOAD
0 B&C: SLOAD + GSECs separated on the fly through the classical min-cut algorithm

0 Benders: SLOAD + MCF inserted through Cplex annotated Benders to avoid the
computational burden of introducing f variables. Subproblems are separated by t

and / as they are fully independent

Time limit: 2 hours
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Results: Optimality gap at termination
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Results: Gap between
termination and best upper bound

ower bound at

700

600

500 [ & 4

£ 400
=

10

Gap wih respect to best UB

20 30 40
Percentage gap with respect to best UB

ESSEC
BUSINESS SCHOOL

50

60

——CL

—-=—DRC

—s—Compact
B&C

—s—Benders



Results: Gap between upper bound at
termination and best lower bound

Gap with respect to best LB
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Results: Number of instances solved to

optimality vs. computing time
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Remarks: Comparison among approaches
with aggregated formulations

0 Compact behaves better than B&C and Benders

o BCis worse than Compact and Benders




Remarks: Comparison with CL and
DRC

0 Aggregated formulations provide good UB and LB:

o Optimality gap remains below 20% for Compact, below 40% for Benders and below 70% for B&C

while it goes up to more than 100% for CL and DRC

o Gap between LB and best UB is below 20% for aggregated approaches while CL and DRC go

above 40% and 50%

o Gap between UB and best LB is at most 20% for Compact, 35% for Benders and 60% for B&C

while CL and DRC go above 60% and 120%

0 However, they solve less instances to optimality (2 hour limit)
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Solvers’ statistics: number of nodes

Compact | B&C | Benders
Av. Low 94939 | 59063 | 68865
Av. High 75823 | 55178 | 57291
Total av. 85381 | 57121 | 63078

The number of nodes in DRC is nearly one order of magnitude lower than Compact




Remark about LOAD relaxation

Archetti, Huerta-Munoz, Guastaroba, Speranza, A Kernel Search Heuristic for the Multi-Vehicle Inventory

Routing Problem, ITOR 28, 2021

Linear relaxation and optimal integer solution for an instance with 10 customers
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Remark about LOAD relaxation

[{d) Best Saoluticn ot & {e) Besi Sclution ek ¢ = 5 {f] Bt Solution ot &

¢] Hest Scluticn at t =5 () Best Sclution nt i

Linear relaxation and best known solution for an instance with 200 customers
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Conclusions

0 Compact behaves better than B&C and Benders
o BCis worse than Compact and Benders
o Aggregated formulations provide good UB and LB

0 However, they solve less instances to optimality (2 hour limit)
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Future directions

Study the link between one-commodity and two-commodity formulations

(Manousakis, Repoussis, Zachariadis, Tarantilis (2021) EJOR)




THANK YOU FOR YOUR ATTENTION

Archetti, Ljubic — EJOR 2022 — Open Access
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