

www.localsolver.com

Inventory routing optimization with LocalSolver

Thierry Benoist tbenoist@localsolver.com

LocalSolver Optimizer

EASY MODELING

FAST SOLUTIONS

HIGHLY SCALABLE

A global Optimization Solver

• Fast solutions and optimality proofs

A simple and powerful modeling formalism

- nonlinear operators
- Set-based modeling

Designed for large scale problems

- Supply chain optimization
- Vehicle routing
- Production scheduling
- Media planning and pricing

Combining exact and heuritic algorithms

- Simplex, Interior-Point, Augmented Lagrangian methods
- Black-box, derivative-free, surrogate modeling methods
- Branch-and-bound, cutting planes, interval methods
- Inference, propagation, clause learning
- Primal heuristics, large neighborhood search
- Metaheuristics, matheuristics
- Multiobjective optimization
- Statistical learning techniques for autotuning

Set-based modeling

Set

x <- **set**(n);

x : a subset of {0, 1, ..., n-1}

- Uniqueness of items
- Variable size

y : permutation of a subset of {0, 1, ..., n-1}

- Uniqueness of items
- Variable size
- Ordering matters

Set based modeling : TSP example

function model() {
 // A list variable
 cities <- list(nbCities);</pre>

```
// All cities must be visited
constraint count(cities) == nbCities;
```

minimize obj;

```
\sum_{i=1}^{n-1} distance[C_{i-1}][C_i]
```


Set based modeling : vehicle routing example

Split delivery model

A client can be served by several vehicles, provided that the total delivered quantity is OK

Modeling:

Inventory Routing model

Vendor Managed Inventory:

Compute one delivery tour per day and associated quantities such that no client reaches dry out level

Modeling:

Neither **cover** nor **partition**: a client can be visited between 0 and nbDays times

quantity[client] becomes quantity[client][day]

 \rightarrow it is a decision variable, with associated linear constraints computing the inventory level for each client at the end of each day

Under the hood (1/2)

In both Split Delivery and Inventory routing models, once list variables are fixed, the residual problem (on quantity variables) is linear

Inventory routing

Split Delivery

Inside LocalSolver, the local search component cooperates with the LP component

Each time a transformation is applied to combinatorial variables (lists), numeric variables are repaired to their linear optimum

This mecanism is not specific to routing

```
\min f_1(x) + f_2(y)

s. c.

g(x) = 0

h(y) = 0

l(y) \le x \le u(y)

y \in \mathbb{Z}^q
```

If f1 and g are linear, the residual problem once red terms are fixed is linear

Applications

Split delivery for a Japanese client

Factories operate from Monday to Saturday morning.
→ deliveries must occur on Saturdays afternoon and Sundays

100 clients, 100 trucks, 15mn solving time

For each client:

- Demand (can exceed the capacity of the largest truck)
- Max number of deliveries
- Time-windows
- Allowed truck sizes (2 tons or 4 tons or both)

The goal is to minimize a linear combination of **the number of trucks**, the **traveled distance**, and the **working time**.

	Gurobi 9.1	LocalSolver 11.0
36 clients and 36 trucks	13,747	13,760
50 clients and 60 trucks	25,350	23,221
100 clients and 115 trucks	No solution	51,585

Results after 15 minutes (minimization)

Inventory Routing – Air Liquide (Canada, Germany, USA)

AirLiquide

Highly complex route optimization

- Up to 500 clients to serve
- Order & inventory management
- Heterogeneous resources (drivers, tractors, trailers) with time windows
- Sourcing and delivery time windows
- Multiple depots, multiple products
- Complex driver rules and regulations
- High quality solutions in minutes

Step by step

2018 : Performance benchmark (Proof-of-Concept) organized by Air Liquide
2019: Minimum Viable Product deployed in Canada - 2%-7% savings on \$/ton
2020- : Deployment country by country
\$250,000 annually on a small region

Conclusion

An easy modeling of inventory routing problems

• See our example tour for detailed models on <u>www.localsolver.com</u>

SDVRP and IRP optimization for industries

- Large-scale problems
- Many practical constraints to be taken into account
- <u>Significant savings</u>

