The logistics problem	Existing approaches	Large Neighborhood Search	Results	Conclusion
00000	000	0000000000000	000000	00

Solving a continent-scale, multi-attribute inventory routing problem at Renault One-day workshop on the IRP

Louis Bouvier, Guillaume Dalle, Axel Parmentier, Thibaut Vidal

Renault - Ecole des Ponts

20/05/2022

The logistics problem	Existing approaches	Large Neighborhood Search	Results	Conclusion
00000	000	00000000000000	000000	00

Plan

The logistics problem

Existing approaches

Large Neighborhood Search

Results

Conclusion

The logistics problem •0000	Existing approaches	Large Neighborhood Search	Results 000000	Conclusion

Plan

The logistics problem

Existing approaches

Large Neighborhood Search

Results

Conclusion

The logistics problem	Existing approaches	Large Neighborhood Search	Results	Conclusion
00000	000	0000000000000	000000	00

Introduction

Figure 1: Illustration of the Inventory Routing Problem (only one day represented).

The	logistics	problem
000	00	

 $\begin{array}{c} \mathsf{Existing approaches} \\ \texttt{000} \end{array}$

Large Neighborhood Search

Results 000000 Conclusion

Europe instance

Figure 2: Visual of the Europe instance.

Depots, customers and routes

Sites: Multi-depot instances, multicommodity release and demand.

Vehicles: Infinite fleet of homogeneous vehicles.

Routes:

- Transport may last several days as considered by Lagos, Boland, and Savelsbergh [11].
- Vehicles have size L: a 1D bin packing problem is solved.
- Split deliveries are allowed.
- Limit on the number of stops S_{\max} per route.

Conclusion

Our optimization problem

The	logistics	problem	
000	00		

Conclusion

Plan

The logistics problem

Existing approaches

Large Neighborhood Search

Results

Conclusion

Solving a continent-scale, multi-attribute inventory routing problem at Renault

Renault - Ecole des Ponts

We can distinguish several trends:

- Branch and bound Coelho and Laporte [6] and Desaulniers, Rakke, and Coelho [9].
- Metaheuristics Benoist et al. [3].
- Matheuristics Archetti, Boland, and Speranza [1], Bertazzi et al. [4], Su et al. [13], Coelho, De Maio, and Laganà [7], and Archetti et al. [2].
- Two-step heuristics Campbell and Savelsbergh [5] and Cordeau et al. [8].

Challenges

The main difficulties we face are:

- The multi-depot and multi-commodity aspects.
- The multiple-day routes.
- The size of the instances: |D| = 15, |C| = 600, |M| = 30, T = 20 compared with the benchmark *OR-Brescia* -*Benchmark Instances* [12].

ightarrow No algorithm is known to scale to our context.

The	logistics	problem
000	00	

 $\begin{array}{c} \mathsf{Existing} \ \mathsf{approaches} \\ \mathsf{000} \end{array}$

Large Neighborhood Search

Results 000000 Conclusion

Plan

The logistics problem

Existing approaches

Large Neighborhood Search

Results

Conclusion

Solving a continent-scale, multi-attribute inventory routing problem at Renault

Renault - Ecole des Ponts

The logistics problem	Existing approaches	Large Neighborhood Search	Results	Conclusion
00000	000	0000000000000	000000	00

Overview

Initialization + local search: get quickly a non-trivial solution.

Matheuristic: solve large neighborhood MILPs up to a small gap to select and reload promising routes.

LNS: iteratively apply local search and solve large neighborhoods and perturbations MILPs with higher gap and time criteria.

Figure 3: Algorithms principles.

Contributions

- Review the literature.
- Implement and adapt 13 route neighborhoods.
- Adapt a matheuristic as large neighborhood.
- Design two new perturbations.
- \rightarrow Scale to our instances.

Reload fixed-path vehicles principle

Figure 4: Initial solution (only one day represented).

Reload fixed-path vehicles principle

Figure 5: Routes related to one depot.

Renault - Ecole des Ponts

Reload fixed-path vehicles principle

Figure 6: New solution.

Renault - Ecole des Ponts

Reload fixed-path vehicles

Ideas:

- Neighborhood version of Bertazzi et al. [4] and Archetti, Boland, and Speranza [1]
- Simultaneously choose the routes to keep and the quantities to be delivered.

Remark: this neighborhood can be applied on any set of routes.

Implementation: We use Gurobi solver Gurobi Optimization, LLC [10] with a warm start \rightarrow a few seconds of computation per depot.

Large Neighborhood Search

Results 000000 Conclusion

Customer reinsertion principle

Figure 7: Initial solution (only one day represented).

Large Neighborhood Search

Results 000000 Conclusion

Customer reinsertion principle

Figure 8: Removal of a customer (only one day represented).

Large Neighborhood Search

Results 000000 Conclusion

Customer reinsertion principle

Figure 9: Reinsertion of a customer (only one day represented).

Customer reinsertion

Ideas:

- Use coupled flows.
- Pre-compute as much cost as we can.
- Sparsify the graphs.

Proposition

Our MILP is a relaxation of the customer reinsertion problem.

- Remark: We systematically reconstruct a feasible solution.
- Implementation: We use Gurobi solver Gurobi Optimization, LLC [10] with a warm start \rightarrow a few seconds of computation per customer.

Large Neighborhood Search

Results 000000

Conclusion

Commodity reinsertion principle

Figure 10: Initial solution (only one day represented).

Large Neighborhood Search

Results 000000

Conclusion

Commodity reinsertion principle

Figure 11: Removal of a commodity (only one day represented).

Large Neighborhood Search

Results 000000

Conclusion

Commodity reinsertion principle

Figure 12: Reinsertion of a commodity (only one day represented).

Commodity reinsertion

Ideas:

- Use 2 coupled flows.
- Restrict to new direct routes.
- Combine with a fast local search.

Remark: We systematically reconstruct a feasible solution.

Implementation: We use Gurobi solver Gurobi Optimization, LLC [10] and warm start \rightarrow a few seconds of computation per commodity.

T he logistics problem	Existing approaches	Large Neighborhood Search	Results ●00000	Conclusion

Plan

The logistics problem

Existing approaches

Large Neighborhood Search

Results

Conclusion

The logistics problem	Existing approaches	Large Neighborhood Search	Results	Conclusion
00000	000	0000000000000	00000	00

Global results of the LNS

Number of instances	71
Average number of depots	15
Average number of customers	602
Average number of commodities	30
Average horizon (days)	21

Table 1: Instances overview.

	$S_{\rm max} = 3$	$S_{\rm max} = 10$
Gap initialization + local search	121%	77%
Gap matheuristic	87%	64%
Gap LNS	66%	40%
Time limit	90 minutes	180 minutes

Table 2: Average gap results.

The logistics problem	Existing approaches	Large Neighborhood Search	Results 00●000	Conclusion

Time per operator

Figure 13: Duration allocated per operator.

Large Neighborhood Search

Cost gain per CPU time and operator

Figure 14: Cost gain per CPU time and operator.

Solving a continent-scale, multi-attribute inventory routing problem at Renault

Renault - Ecole des Ponts

Gaps cumulative distributions

Figure 15: Cumulative distribution of the gaps for $S_{\text{max}} = 10$.

Renault - Ecole des Ponts

Gaps cumulative distributions after ablation

Figure 16: Cumulative distribution of the gap over instances.

		Conclusion
000000000000	00 00000	o • 0
	000000000000000000000000000000000000000	

Plan

The logistics problem

Existing approaches

Large Neighborhood Search

Results

Conclusion

Conclusion

Literature review on IRP.

LNS (to be submitted):

- 13 routing neighborhoods adapted.
- One route-based large neighborhood.
- Two new perturbations.
- Implementation and numerical experiments.

Perspectives:

- Industrialization.
- Address the "forecast dispatch" problem.
- Use machine learning for operations research techniques.

Bibliography I

- Claudia Archetti, Natashia Boland, and M. Grazia Speranza. "A Matheuristic for the Multivehicle Inventory Routing Problem". In: INFORMS Journal on Computing 29.3 (Apr. 2017), pp. 377–387. ISSN: 1091-9856. DOI: 10/gbsn75.
- [2] Claudia Archetti et al. "A Kernel Search Heuristic for the Multivehicle Inventory Routing Problem". In: International Transactions in Operational Research 28.6 (Nov. 2021), pp. 2984–3013. ISSN: 0969-6016, 1475-3995. DOI: 10/gkzvqh.
- [3] Thiery Benoist et al. "Randomized Local Search for Real-Life Inventory Routing". In: Transportation Science 45.3 (Mar. 2011), pp. 381–398. ISSN: 0041-1655. DOI: 10.1287/trsc.1100.0360.
- [4] Luca Bertazzi et al. "A Matheuristic Algorithm for the Multi-Depot Inventory Routing Problem". In: Transportation Research Part E: Logistics and Transportation Review 122 (Feb. 2019), pp. 524–544. ISSN: 1366-5545. DOI: 10/ggdvtf.
- [5] Ann Melissa Campbell and Martin W. P. Savelsbergh. "A Decomposition Approach for the Inventory-Routing Problem". In: *Transportation Science* 38.4 (Nov. 2004), pp. 488–502. ISSN: 0041-1655. DOI: 10/fkm54g.
- [6] Leandro C. Coelho and Gilbert Laporte. "The Exact Solution of Several Classes of Inventory-Routing Problems". In: Computers & Operations Research 40.2 (Feb. 2013), pp. 558–565. ISSN: 0305-0548. DOI: 10/gjvm3n.
- [7] Leandro Callegari Coelho, Annarita De Maio, and Demetrio Laganà. "A Variable MIP Neighborhood Descent for the Multi-Attribute Inventory Routing Problem". In: Transportation Research Part E: Logistics and Transportation Review 144 (Dec. 2020), p. 102137. ISSN: 13665545. DOI: 10/gm954p.

Bibliography II

- [8] Jean-François Cordeau et al. "A Decomposition-Based Heuristic for the Multiple-Product Inventory-Routing Problem". In: Computers & Operations Research 55 (Mar. 2015), pp. 153–166. ISSN: 03050548. DOI: 10/f6w8pp.
- [9] Guy Desaulniers, Jørgen G. Rakke, and Leandro C. Coelho. "A Branch-Price-and-Cut Algorithm for the Inventory-Routing Problem". In: Transportation Science 50.3 (Oct. 2015), pp. 1060–1076. ISSN: 0041-1655. DOI: 10/f8zpgc.
- [10] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. 2021. URL: https://www.gurobi.com.
- [11] Felipe Lagos, Natashia Boland, and Martin Savelsbergh. "The Continuous-Time Inventory-Routing Problem". In: Transportation Science (Jan. 2020), trsc.2019.0902. ISSN: 0041-1655, 1526-5447. DOI: 10.1287/trsc.2019.0902.
- [12] OR-Brescia Benchmark Instances. https://or-brescia.unibs.it/instances.
- [13] Zhouxing Su et al. "A Matheuristic Algorithm for the Inventory Routing Problem". In: Transportation Science (Mar. 2020), trsc.2019.0930. ISSN: 0041-1655, 1526-5447. DOI: 10/gm954v.