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Context

Nonlinear hyperelastic problem
measure of the deformations (geometric nonlinearity)
stress-strain constitutive relation (material nonlinearity)

Presence of volumetric-locking with primal H1-conforming formulation in the
incompressible limit λ→ +∞ (ν ' 0.5)
An alternative : using mixed methods but more unknowns, more expensive to
build, saddle-point problem to solve ...

Figure 1 – Trace of the stress tensor for (a) P1 (b) P2 (c) P2/P1/P1
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Some references for hyperelasticity

Some references on primal formulations without volumetric-locking
discontinuous Galerkin (dG)

[Noels, Radovitzsky 06]
[ten Eyck, Lew 06]

Hybridizable Discontinuous Galerkin (HDG)
[Nguyen, Peraire 12]
[Kabaria, Lew, Cockburn 15]

Virtual Element Method (VEM)
[Chi, Beirão da Veiga, Paulino 17]
[Wriggers, Reddy, Rust, Hudobivnik 17]
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Key ideas of Hybrid High-Order (HHO) methods

Primal formulation with cells and faces unknowns

Local reconstruction and stabilization
Gradient tensor field reconstructed in Pk

d(T ;Rd×d)
Stabilization connecting cell and faces unknowns

References
diffusion problem [Di Pietro, Ern, Lemaire, CMAM 14]
quasi-incompressible linear elasticity [Di Pietro, Ern, CMAME 15]
nonlinear elasticity with small def. [Botti, Di Pietro, Sochala, SINUM 17]

Figure 2 – Face (green) and Cell (blue) unknowns
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Features of HHO methods

Support of polytopal meshes (with possibly nonconforming interfaces)

Arbitrary approximation order k ≥ 1
hk+1 convergence in energy-norm
hk+2 convergence in L2-norm with elliptic regularity

Dimension-independent construction

Attractive computational costs
Compact stencil (only neighbourhood faces)
Cell unknowns are eliminated locally by static condensation
Reduced size Nhho

dofs ≈ k2card(Fh) vs. NdG
dofs ≈ k3card(T h)

Local principle of virtual work (equilibrated tractions)

HHO methods are bridged to HDG and ncVEM
[Cockburn, Di Pietro, Ern 16]
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Hyperelasticity problem

Let Ω0 ∈ Rd (d=2,3), be a bounded connected polytopal domain
Let f and t be given volumetric and surface (on Γn) loads
Let uD be a given imposed displacement on Γd

We define the energy functional E in the reference configuration for all
v ∈ V :=

{
v ∈ H1(Ω0,Rd) | v = uD on Γd

}
E(v) :=

∫
Ω0

Ψ(F (v))−
∫

Ω0

f .v dΩ0 −
∫

Γn

t.v dΓ.

with F := ∇
X
u + I d and a strain energy density Ψ : Rd×d

+ → R
Example of Neohookean strain energy density

Ψ(F ) =
µ

2
(
F : F − d

)
− µ ln(detF ) +

λ

2
(ln(detF ))2,

with µ > 0, λ > 0 (material constants)
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Weak problem

We assume that Ψ is polyconvex, i.e. existence of local minimizers

Static equilibrium : stationary point(s) u of the energy E

DE(u)[δv ] = 0, ∀δv ∈ H1
0 (Ω0,Rd)

Weak problem : Find u ∈ V such that for all δv ∈ H1
0 (Ω0,Rd)∫

Ω0

P(F (u)) : ∇
X

(δv) dΩ0 =

∫
Ω0

f ·δv dΩ0 +

∫
Γn

t·δv dΓ.

with P = ∂F Ψ the first Piola–Kirchhoff stress tensor
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Local DOFs space

Let Mh := (T h,Fh) be a mesh of Ω0 with T h the set of cells and Fh the set
of faces
Let a polynomial degree k ≥ 1, for all T ∈ T h

(vT , v∂T ) ∈ Uk
T︸︷︷︸

local HHO dofs

:= Pk
d(T ;Rd)︸ ︷︷ ︸

local cell dofs

× Pk
d−1(F∂T ;Rd)︸ ︷︷ ︸
local faces dofs

.

Figure 3 – Local DOFs for k = 1, 2. Cell unknowns eliminated by static condensation
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Gradient reconstruction

G k

T
: Uk

T︸︷︷︸
local HHO space

→ Pk
d(T ;Rd×d)︸ ︷︷ ︸

local gradient space

The reconstructed gradient G k

T
(vT , v∂T ) solves, ∀τ ∈ Pk

d(T ;Rd×d)

(G k

T
(vT , v∂T ), τ )L2(T ) = (∇

X
vT , τ )L2(T ) + (v∂T − vT , τ nT )L2(∂T ).

local scalar mass-matrix of size
(
k+d
k

)
to invert (ex : k = 2, d = 3, size = 10)

We define F k

T
(vT , v∂T ) := G k

T
(vT , v∂T ) + I d ∈ Pk

d(T ;Rd×d)

Local discrete counterpart Emech
T : Uk

T → R of the energy E

Emech
T (vT , v∂T ) =

∫
T

{
Ψ(F k

T
(vT , v∂T ))− f ·vT

}
dT −

∫
∂T∩Fh

b,n

t·v∂T d∂T
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Stabilization operator

Problem : G k

T
(vT , v∂T ) = 0 ; vT = v∂T = cste

⇒ We have to add a stabilization term

Hence, we penalize the difference between the faces unknowns and the trace
of the cell unknowns : θ := v∂T − vT |∂T ∈ Pk

d−1(F∂T ;Rd),

Sk
∂T (θ) = Πk

∂T (θ − (I d −Πk
T )Dk+1

T (0,θ))

where Πk
∂T is the L2-projector on ∂T , Πk

T the L2-projector on T , and Dk+1
T

is a reconstructed displacement field

We define the local stabilization energy E stabT : Uk
T → R

E stabT (vT , v∂T ) =
h−1
T

2
‖Sk

∂T (v∂T − vT |∂T )‖2L2(∂T )
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Global DOFs space and discrete energy

We define the global space by patching the interface DOFs

(vT h , vFh) ∈ Uk
h︸︷︷︸

global HHO dofs

:=

{
ą

T∈T h

Pk
d(T ;Rd)

}
︸ ︷︷ ︸

global cells dofs

×

{
ą

F∈Fh

Pk
d−1(F ;Rd)

}
︸ ︷︷ ︸

global faces dofs

and its subspaces Uk
h,d and Uk

h,0 by imposing strongly the BC on Γd .

We define the global discrete energy Eh : Uk
h → R

Eh(vT h , vFh)︸ ︷︷ ︸
global discrete energy

=
∑
T∈T h

Emech
T (vT , v∂T )︸ ︷︷ ︸

global mech. discrete energy

+
∑
T∈T h

β E stabT (vT , v∂T )︸ ︷︷ ︸
global stabilzation energy

with β an user-dependent stabilization parameter (can be hard to choose)
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Discrete problem

We search the stationary point(s) of Eh

DEh(uT h ,uFh))[(δvT h , δvFh)] = 0, ∀(δvT h , δvFh) ∈ Uk
h,0

Find (uT h ,uFh) ∈ Uk
h,d such that∑

T∈T h

(P(F k

T
(uT ,u∂T )),G k

T
(δvT , δv∂T ))L2(T )

+
∑
T∈T h

βh−1
T (Sk

∂T (u∂T − uT |∂T ),Sk
∂T (δv∂T − δvT |∂T ))L2(∂T )

=
∑
T∈T h

(f , δvT )L2(T ) +
∑

F∈Fh
b,n

(t, δvF )L2(F ), ∀(δvT h , δvFh) ∈ Uk
h,0
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Numerical examples

Nonlinear problem to solve (geometric and material nonlinearites)

Iterative resolution with a Newton method (SPD global system)

Static condensation performed at each Newton’s iteration

Offline computations (gradient and stabilization operators precomputed)

Implementation in the open-source library disk++

Verification on analytical solutions :
Expected convergence rates (hk+1 in energy-norm and hk+2 in L2-norm)
Absence of volumetric-locking in the quasi-incompressible regime

Tested on more challenging 3D test cases (see [Kabaria, Lew, Cockburn 15])
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Quasi-incompressible annulus I

Analytical solution
Imposed radial displacement on the inner circumference

(a) Reference and final
configuration

0.99910 0.99958 1.00006

(b) Discrete Jacobian

Figure 4 – Solution for k = 1 and ν = 0.4999
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Quasi-incompressible annulus II
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(a) Displacement error
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(b) Gradient error

Figure 5 – errors vs. λ on a fixed mesh

The errors do not depend on λ
⇒ HHO methods are robust in the incompressible limit
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Sheared and compressed cylinder (ν = 0.45)

The bottom face is clamped
Imposed vertical and horizontal displacement on the top face

Figure 6 – Snapshots of the displacement at 0%, 40%, 80% and 100% of loading
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Sphere with cavitating voids

Growth of internal cavities under large tensile stresses
Conforming FEM are not really robust
Imposed radial displacement on the outer surface
We stop when the Newton’s method fails to converge

Figure 7 – Displacement for k = 2 at the different steps (around 250% of deformations)
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Variant of HHO methods on simplicial meshes

Original idea for dG : [John, Neilan, Smears 16]
Based on the properties of the Raviart–Thomas space

Gradient reconstruction in Pk+1
d (T ;Rd×d) (larger space)

ex : k = 2, d = 3, size = 20 for Pk+1
d (T ;Rd×d) vs 10 for Pk

d(T ; vd×d)

No additional stabilization is needed

Lower convergence rates (hk in energy-norm and hk+1 in L2-norm)

Comparable numerical cost vs. stabilized HHO (sHHO) methods

Better results for the cavitation problem (rmax = 2.52 vs. r sHHOmax = 2.13)
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Conclusions and perspectives

Conclusion :
Adaptation of HHO methods to hyperelastic material with finite deformations
Absence of volumetric-locking
Variant of HHO method without stabilization

Perspectives of this work :
Extension to finite plasticity
Introduction of contact and friction
Implementation in code_aster (in progress)
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Thank you for your attention

email : nicolas.pignet@enpc.fr
code : https ://github.com/datafl4sh/diskpp

Reference : M. Abbas, A. Ern and NP, "Hybrid High-Order methods for finite
deformations of hyperelastic materials", Comput. Mech. (2018)
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