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Context

@ Nonlinear hyperelastic problem
o measure of the deformations (geometric nonlinearity)
o stress-strain constitutive relation (material nonlinearity)
@ Presence of volumetric-locking with primal H!-conforming formulation in the
incompressible limit A\ — +oo (v ~ 0.5)
@ An alternative : using mixed methods but more unknowns, more expensive to
build, saddle-point problem to solve ...
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Figure 1 — Trace of the stress tensor for (a) P1 (b) P2 (c) P2/P1/P1
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Some references for hyperelasticity

Some references on primal formulations without volumetric-locking
e discontinuous Galerkin (dG)

o [Noels, Radovitzsky 06]
o [ten Eyck, Lew 06]

@ Hybridizable Discontinuous Galerkin (HDG)
o [Nguyen, Peraire 12]
o [Kabaria, Lew, Cockburn 15]

o Virtual Element Method (VEM)

o [Chi, Beirdo da Veiga, Paulino 17]
o [Wriggers, Reddy, Rust, Hudobivnik 17]
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Key ideas of Hybrid High-Order (HHO) methods

@ Primal formulation with cells and faces unknowns

@ Local reconstruction and stabilization

o Gradient tensor field reconstructed in P&( T; R*9)
o Stabilization connecting cell and faces unknowns

@ References
o diffusion problem [Di Pietro, Ern, Lemaire, CMAM 14]
e quasi-incompressible linear elasticity [Di Pietro, Ern, CMAME 15]
o nonlinear elasticity with small def. [Botti, Di Pietro, Sochala, SINUM 17]
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Figure 2 — Face (green) and Cell (blue) unknowns
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Features of HHO methods

Support of polytopal meshes (with possibly nonconforming interfaces)

Arbitrary approximation order k > 1
° hk+1
° hk+2

convergence in energy-norm
convergence in L%-norm with elliptic regularity

@ Dimension-independent construction

Attractive computational costs

e Compact stencil (only neighbourhood faces)
o Cell unknowns are eliminated locally by static condensation
o Reduced size N ~ kcard(F") vs. N3&% ~ k3card(7™)

@ Local principle of virtual work (equilibrated tractions)

HHO methods are bridged to HDG and ncVEM
o [Cockburn, Di Pietro, Ern 16]

Nicolas Pignet Hybrid High-Order methods for finite deformations of hyperelastic materials



Hyperelasticity problem

o Let Qp € RY (d=2,3), be a bounded connected polytopal domain
o Let f and t be given volumetric and surface (on ') loads
o Let up be a given imposed displacement on Iy

o We define the energy functional £ in the reference configuration for all
veV:={veH(QR)| v=uponTly}

e = [ WEW) - [ fvane- [ evar

n

with F := ng+id and a strain energy density WV : RiXd —R

@ Example of Neohookean strain energy density

: F —d) — pin(det F) + %(In(deté))z,

with 1 > 0, A > 0 (material constants)
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Weak problem

@ We assume that V is polyconvex, i.e. existence of local minimizers
@ Static equilibrium : stationary point(s) u of the energy &
DE(u)[dv] = 0, Vov € Hy(Qo,RY)

e Weak problem : Find u € V such that for all v € H3(Q0,R?)

/ P(F(u)) :Zx(ég) dQo = f-ov dQq +/ t-ovdrl.
QQ =

Q0 rn

with P = OV the first Piola-Kirchhoff stress tensor

Nicolas Pignet Hybrid High-Order methods for finite deformations of hyperelastic materials



Local DOFs space

o Let M":= (7", F") be a mesh of Qg with 7" the set of cells and F" the set
of faces

o Let a polynomial degree k > 1, forall T € T"

(vr,vyr) € Uk = PY(T;RY) x P5_,(For: RY).
— —_—

local HHO dofs local cell dofs local faces dofs

Figure 3 — Local DOFs for k = 1,2. Cell unknowns eliminated by static condensation
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Gradient reconstruction

Gl Uy o PY(TRTY)
= ~— [ —
local HHO space local gradient space

@ The reconstructed gradient gl;-(!T,lar) solves, VT € PX(T; RI*?)

(g?(zr,!m)é)é (V Vs, T )LZ(T)+( o7 — Y7, TOT)12(07)-

o local scalar mass-matrix of size (ktd) to invert (ex : k =2, d = 3, size = 10)
o We define F (v, vyr) = G5 (vr,vor) + La € Ph(T; R

e Local discrete counterpart £/ ng — R of the energy £

57TeCh(!T,!Z)T):/ {W(E{(’—(!T’!‘()T)) fvr }dT*/ t-v,r doT
T TN,
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Stabilization operator

.k _ _ —
o Problem : G7(vr,vyr) =0+ v = vyr = cste
o = We have to add a stabilization term

@ Hence, we penalize the difference between the faces unknowns and the trace
of the cell unknowns : 8 := v, — vra7 € P4_ (Far; RY),

S47(0) = Ni7(0 — (1g — N%)D4(0,0))

where ﬂgT is the L2-projector on OT, ﬂkT the L2-projector on T, and Q’}H
is a reconstructed displacement field

o We define the local stabilization energy £t ng —-R

ATt k
vy, vor) = 211857 (vor — vrior) o)
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Global DOFs space and discrete energy

@ We define the global space by patching the interface DOFs

(Vrn, V) € Uj :—{ X IP’Z(T:]Rid)} X{ X PZI(F;RC’)}
~—

h h
global HHO dofs TeT Fer

global cells dofs global faces dofs
and its subspaces gﬁ 4 and gﬁo by imposing strongly the BC on I,.

@ We define the global discrete energy &, : gﬁ —R

En(Vrn, Vi) = Z EFe(vr, vor) + Z BEFE(vr,vor)

h h
global discrete energy TeT TeT

global mech. discrete energy  global stabilzation energy

with /3 an user-dependent stabilization parameter (can be hard to choose)
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Discrete problem

@ We search the stationary point(s) of &
DE(urn, uzn))[(6¥ s, 6¥ )] = O, V(6w s, 6w ) € Uk g

e Find (usw,uzn) € Q,ﬁ’d such that

Z (Q(él;—(HT7QBT))a£I-(r(5!TVJKE)T))E(T)

TeTh
+ Z Bhr (Shr(upr — urior), S5T(0var — dvriaT))27)
TeTh
= > (Eovr)em+ Y, (86ve)izF), V(0w dvz) € Uk,
TeTh FEF!,
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Numerical examples

Nonlinear problem to solve (geometric and material nonlinearites)

o lterative resolution with a Newton method (SPD global system)

Static condensation performed at each Newton's iteration

e Offline computations (gradient and stabilization operators precomputed)

@ Implementation in the open-source library disk++

@ Verification on analytical solutions :
e Expected convergence rates (h"+1 in energy-norm and h**2 in L?-norm)
e Absence of volumetric-locking in the quasi-incompressible regime

°

Tested on more challenging 3D test cases (see [Kabaria, Lew, Cockburn 15])
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Quasi-incompressible annulus |

@ Analytical solution
@ Imposed radial displacement on the inner circumference

0.99910 0.99958 1.00006
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(a) Reference and final (b) Discrete Jacobian
configuration

Figure 4 — Solution for k = 1 and v = 0.4999
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Quasi-incompressible annulus I
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Figure 5 — errors vs. A on a fixed mesh

@ The errors do not depend on A
= HHO methods are robust in the incompressible limit

Nicolas Pignet Hybrid High-Order methods for finite deformations of hyperelastic materials



Sheared and compressed cylinder (v = 0.45)

@ The bottom face is clamped
@ Imposed vertical and horizontal displacement on the top face

RO
AR

Figure 6 — Snapshots of the displacement at 0%, 40%, 80% and 100% of loading
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Sphere with cavitating voids

@ Growth of internal cavities under large tensile stresses
@ Conforming FEM are not really robust

@ Imposed radial displacement on the outer surface

@ We stop when the Newton's method fails to converge

Figure 7 — Displacement for k = 2 at the different steps (around 250% of deformations)
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Variant of HHO methods on simplicial meshes

Original idea for dG : [John, Neilan, Smears 16]

e Based on the properties of the Raviart—Thomas space

o Gradient reconstruction in PX™(T; R?*9) (larger space)
o ex: k=2, d=3, size = 20 for PT1(T;RY*?) vs 10 for P&(T; v**9)

@ No additional stabilization is needed

Lower convergence rates (h* in energy-norm and h**1 in [2-norm)

e Comparable numerical cost vs. stabilized HHO (sHHO) methods

Better results for the cavitation problem (ry.x = 2.52 vs. rsHHO = 2.13)
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Conclusions and perspectives

o Conclusion :

e Adaptation of HHO methods to hyperelastic material with finite deformations
e Absence of volumetric-locking
e Variant of HHO method without stabilization

@ Perspectives of this work :

o Extension to finite plasticity
o Introduction of contact and friction
o Implementation in code_aster (in progress)

A

code_aster
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Thank you for your attention

email : nicolas.pignet@enpc.fr
code : https ://github.com/datafl4sh/diskpp

Reference : M. Abbas, A. Ern and NP, "Hybrid High-Order methods for finite
deformations of hyperelastic materials", Comput. Mech. (2018)
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