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Outline

The talk is developed in two parts:

 Part 1: Mixed-Integer Linear Programming (MILP), a successful story:
e /5 years of mathematics, algorithms and software development.

o Part 2: MILP at the time of Artificial Intelligence:
 Methodological directions in which the use of Machine Learning is

changing and will change (?) MILP.

We will finish with some perspectives.



Mixed-Integer Linear Programming: Where?
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Mixed-Integer Linear Programming: How?



minc’x s.t. Ax < b,x € {0,1}"

Objective value | § _ .
i Primal bound: value

| of best solution so far

OPT

Search tree nodes

/" Dual bound: min. value of

Value of LP LP relaxation at frontier
relaxation at == ===
root node

Slide courtesy of E. Khalil



MILP evolution, early days

e Despite quite some work on basically all aspects of IP and in particular on cutting planes, the
early days of general-purpose MILP solvers were mainly devoted to develop fast and reliable LP
solvers used within good branch-and-bound schemes.

e Remarkable exceptions are:
— 1983 Crowder, Johnson & Padberg: PIPX, pure 0/1 MILPs

— 1987 Van Roy & Wolsey: MPSARX, mixed 0/1 MILPs

e When do the early days end?
Or equivalently, when does the current generation of MILP solvers appear?

e It looks like a major (crucial) step to get to nowadays MILP solvers has been the ultimate proof
that cutting plane generation in conjunction with branching could work in general, i.e., after
the success in the TSP context:

— 1994 Balas, Ceria & Cornuéjols: lift-and-project

— 1996 Balas, Ceria, Cornuéjols & Natraj: gomory cuts revisited



MILP evolution, an interesting experiment

e Bob Bixby & Tobias Achterberg performed the following interesting experiment comparing
Cplex versions from Cplex 1.2 (the first one with MILP capability) up to Cplex 11.0.

e 1,734 MILP instances, time limit of 30,000 CPU seconds, computing times as geometric means
normalized wrt Cplex 11.0 (equivalent if within 10%).

Cplex versions  year | better worse time

11.0 2007 0 0 1.00 N ¢ 0O
100 2005 | 201 650 1.1 -
9.0 2003 142 793 273

8.0 2002 117 856  3.56 e o ©
7.1 2001 63 930 459

6.5 1999 71 997  7.47 ¢ & ©
6.0 1998 55 1060 21.30 o O O
5.0 1997 45 1069 22.57

4.0 1995 37 1089 26.29 0 O ©
3.0 1994 34 1107 34.63 e 6 6 6 o c
2.1 1993 13 1137 56.16

1.2 1991 17 1132 67.90

Figure 1: Strengthening the LP relaxation by cutting planes.



MILP evolution, nowadays key features

e The current generation of MILP solvers incorporates key ideas developed continuously during
the first 50 years of Integer Programming (often in the context of location problems):

— Preprocessing:
probing, bound strengthening, propagation

— Cutting plane generation:
Gomory Mixed Integer cuts, Mixed Integer Rounding, cover cuts, flow covers, . . .

— Sophisticated branching strategies:
strong branching, pseudo-cost branching, diving and hybrids

— Primal heuristics:
rounding heuristics (from easy to complex), local search, . . .

e Moreover, MILP computation has reached such an effective and stable quality to allow the
solution of sub-MILPs in the algorithmic process, the MIPping approach [Fischetti & Lodi 2002].



MILP building blocks: preprocessing / presolving

* In the preprocessing phase a MILP solver tries to detect certain changes in the input that
will probably lead to a better performance of the solution process.

* Generally without “changing” the set of optimal solutions, a notable exception being
symmetry breaking reductions.

* There are two different venues for preprocessing.

1. Model preprocessing:
MILP models often contain some “garbage”, i.e., redundant or weak information

slowing down the solution process by forcing the solver to perform useless operations.
Thus, modern MILP solvers have the capability of cleaning up and strengthen a model
SO as to create a presolved instance on which the MILP technology is then applied.

2. Algorithmic preprocessing:
More sophisticated presolve mechanisms are also able to discover important
implications and sub-structures that might be of fundamental importance later on in the

computation for both branching purposes and cutting plane generation.

* Finally, the lower and upper bounds on the objective function and the solution of LPs can be
used to perform even stronger reduction (known as probing) with the aim of fixing variables.



MILP building blocks: cutting planes

e From what has been discussed before, it is clear that cutting planes are a crucial components of
MILP solvers.

e Given the MILP (1), we are mainly interested in the two sets

S:={Az < b,z >0, z, € Z,Vj € I} (3)

and

P .= {Ax <b,x > 0}. (4)

e Generality: We are interested in general-purpose cutting planes, those that can be derived
without assuming any special structure for the polyhedron P.

e \alidity: An inequality ax < B is said to be valid for S if it is satisfied by all x € S.

e Obtaining a valid inequality for a continuous set: Given P, any valid inequality for it is
obtained as uAx < 3, where u € R and 8 > ub. (Farkas Lemma)



MILP building blocks: cutting planes (cont.d)

e Separation:
Given a family of valid inequalities F and a solution ™ € P \ S, the Separation problem for

JF is defined as

Find an inequality axz < 3 of F valid for S such that aax™ > B or show that none
exists.

e |terative strengthening
T

1. solve the problem {maxc'z : x € P} and get ™
2. if x™ € S then STOP
3. solve the separation problem, add ax < 8 to P and go to 1.

e (Almost) all cutting plane classes that belong to the arsenal of nowadays MILP solvers belong
to the family of split cuts, i.e., they are separated by exploiting in some way (from easy to
complex) a disjunction on the integer variables.



MILP building blocks: cutting planes (cont.d)

® A basic rounding argument:

fx € Zandx < f f € 7Z, thenx < | f].

e Using rounding:

Consider an inequality axz < [ suchthat o; € Z, 7 = 1, ..., n in the pure integer case
I ={1,...,n}. If ax < B, then ax < |B] is valid as well.
e Example:
x € Z? such that r1+ 220 < 1.9 = 1+ 22 < L1-9J =1
®




MILP building blocks: cutting planes (cont.d)

e Theorem [Gomory 1958, Chvatal 1973]:

If £ € Z" satisfies Ax < b, then the inequality uAx < |ub]| is valid for S for all
u > 0 such that uA € Z™.

Example:
Consider the polyhedron given by the two inequalities

o o
$1+ZB2§2 ® . °
3x1 + T2 < 5
Let w1 = uy = %, = 2x1+x9 < 3.5 ® o ® \



MILP building blocks: cutting planes (cont.d)

@ Theorem [Gomory 1958, Chvatal 1973]:

If £ € Z" satisfies Ax < b, then the inequality uAx < |ub]| is valid for S for all
u > 0 such that uA € Z™.

Example:
Consider the polyhedron given by the two inequalities

> '
1+ x2 < 2 /

3r1+x2 < 5 ®
Let w1 = ug = % = 2x1+x9 < 3.5 '

and rounding we obtain 2x; + 9 < 3



MILP building blocks: branching

e In its basic version the branch-and-bound algorithm [Land & Doig 1960] iteratively partitions
the solution space into sub-MILPs (the children nodes) that have the same theoretical
complexity of the originating MILP (the father node, or the root node if it is the initial MILP).

e Usually, for MILP solvers the branching creates two children by using the rounding of the
solution of the LP relaxation value of a fractional variable, say x;, constrained to be integral

z; < |z;] OR =z; > |z;| + 1. (5)

e On the two children, left (or “down”) branch and right (or “up”) branch, the integrality
requirement on the variables x;,Vj € I is relaxed and the LP relaxation is solved (again).

® Sub-MILPs become smaller and smaller due to the partition mechanism (basically some of the
decisions are taken) and eventually the LP relaxation is directly integral (or infeasible).

e In addition, the LP relaxation is solved at every node to decide if the node itself is worthwhile
to be further partitioned: if the LP relaxation value is already not better (bigger) than the
incumbent, the node can be safely fathomed.



MILP building blocks: branching (cont.d)

Of course, the basic idea of the splitting a node does not require that branching is performed as
in (5): i.e., more than two children could be created, and one can branch on more general
hyperplanes, or, in general, on any other disjunctive condition.

The reason why variable branching (5) is the most popular (and this situation is not likely to
change anytime soon, at least for MILP solvers) is that it takes full advantage of the ability of
the Simplex algorithm to recompute the optimal solution of the LP relaxation if only variable
bounds (possibly one) have changed.

In fact, on average, for a single LP solution Interior Point algorithms performs better than the
Simplex algorithm [Rothberg 2010], which is in turn (currently) unbeatable in the iterative
context.

The described branch-and-bound framework requires two independent and important decisions
at any step: Node and Variable selection.



MILP building blocks: branching (cont.d)

1. Node selection:
This is very classical: one extreme is the so called best-bound first strategy in which one always
considers the most promising node, I.e., the one with the highest LP value, while the other
extreme is depth first where one goes deeper and deeper in the tree and starts backtracking
only once a node is fathomed.
All other techniques, more or less sophisticated, are basically hybrids around these two i1deas.

2. Variable selection:
The variable selection problem is the one of deciding how to partition the current node, i.e., on
which variable to branch on in order to create the two children.

For a long time, a classical choice has been branching on the most fractional variable, i.e., In
the 0-1 case the closest to 0.5.

That rule has been computationally shown to be worse than a complete random choice
[Achterberg et al. 2005]. However, it is of course very easy to evaluate.

In order to devise stronger criteria one has to do much more work.



MILP building blocks: branching (cont.d)

2. Variable selection (cont.d):
The extreme is the so called strong branching technique [Applegate et al. 2007; Linderoth &

Savelsbergh 1999].

In its full version, at any node one has to simulate branch on each candidate fractional variable
and select the one on which the improvement (decrease) in the bound on the left branch times
the one on the right branch is the maximum.

Of course, this is in general computationally unpractical (discussed later) but all MILP solvers
implement lighter versions of this scheme.

Another sophisticated technique is pseudocost branching [Benichouet al. 1971] that keeps a
history of the success (in terms of the change in the LP relaxation value) of the branchings
already performed on each variable as an indication of the quality of the variable itself.

The most recent effective and sophisticated method, called reliability branching [Achterberg et
al. 2005], integrates strong and pseudocost branchings by defining a reliability threshold, i.e., a
level below which the information of the pseudocosts is not considered accurate enough and
some strong branching is performed.



MILP building blocks: primal heuristics

e [he last 20 years have seen a tremendous improvement in the capabillity
of primal heuristics to almost optimal solutions early in the tree.

e However, a very meaningful experiment [Danna 2006] has shown that
even the knowledge of the optimal solution from the beginning of the
search only improves on average the MILP running time by a factor of 2.

e |n other words, heuristics largely impact on the user perception of the
quality of a solver, and are fundamental in the real-world context.

e The primal heuristics implemented in the solvers go from very light and
easy, as variations of the classical rounding of the LP solution, to much
more heavy and complex, like local search and metaheuristics.

e As mentioned earlier, a relevant step has been solving MILPs within the
MILP technology [Fischetti & Lodi 2002].
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Mixed-Integer Linear Programming: The Al Challenge and Opportunity



Preamble and Disclaimer

The use of Machine Learning (ML) for Combinatorial Optimization (CO) — and
MILP — problems has been ubiquitous in the last 5 to 10 years at the very least.

This is due to the incredible success of ML, especially deep learning, in beating
human capabillities in image recognition, language processing and sequential
games.

Those successes led to ask natural questions about using modern statistical
learning in other disciplines, Combinatorial Optimization being one of them.

The new, recent frontier of Generative Artificial Intelligence is yet another story
and Is not covered by this talk.



Schematic Overview

Slide courtesy of N. Yorke-Smith
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End to End Learning

Problem
definition

ML » Solution

e |Learning TSP solutions
Bello et al. 201 7][Kool and Welling 2018][Emami and Ranka 2018]
Vinyals et al. 2015][Nowak et al. 2017]

 Predict aggregated solutions to MILP under partial

information
[Larsen et al. 2018]

e Approximate obj value to SDP (for cut selection)
|[Baltean-Lugojan et al. 2018]



ML-augmented CO (or MILP)

ML-augmented
CO

Combinatorial
Optimization

\ 4 v
Learning to Learning Learning to
Branch and Cut Heuristics configure

L. Scavuzzo, K. Aardal, A. Lodi, N. Yorke-Smith: Machine
Learning Augmented Branch and Bound for Mixed Integer
Linear Programming, arXiv:2402.05501, 2024.
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Too long
e Expert knowledge of how to make decisions
e Joo expensive to compute

e Need for fast approximation




Too heuristic
 No idea which strategy will perform better
e Need a well performing policy

e Need to discover policies




Question

e Can Machine Learning methods as Imitation Learning,
Reinforcement Learning and all the recent powerful
techniques (e.q., Deep Learning) and architectures (e.g.,
Graph Neural Networks) help Combinatorial Optimization

— particularly MILP — algorithms by dealing with the
issues above (“too slow” and / or “too heuristic”)?



Requirement

e We want to keep the guarantees provided by (exact) CO/
MILP algorithms, namely,

e feasibility, and

e sometimes optimality.



Learning Properties

Prob.le.m Decision Solution
definition

>

e Use a decomposition method
[Kruber et al. 2017]

e Linearize an MIQP
[Bonami et al. 2018]

e Provide initial cancer treatment plans to inverse
optimization
[IMahmood et al. 2018]



Learning Properties, an example

@ A classifier to decide on the linearization of MIQPs in CPLEX
[Bonami, Lodi & Zarpellon (2018, 2021)]

Solving MIQPs

We consider Mixed-Integer Quadratic Programming problems

min, 2xTQx+ c"x: Ax =b,l<x <u,x,€ ZVj € I3}, Q € R™™ symmetric

“convex”, i.e., Q > 0 or easily made so by
» Linearization of products x;x;, x; € {0,1}, ; < x; < y; (via McCormick inequalities)
» Perturbation of Q5 diagonal x"Qx + X icp p; (27 — xj) = xTQx

at preprocessing, then solved by CPLEX using QP simplex-based B&B.

Both operations can be appliedto Q > 0

“— linearization potentially reformulates a MIQP into a MILP (depending on Q nn2)



Learning Properties, an example (cont.d)

| A classifier in CPLEX

Fine-tuning and final training of SVM in the solver,

e 28% better runtimes

on MIQP test instances
(92% on > 10 secs.)

« few degradations, compensated "
by overall improvements

“—> CPLEX 12.10.0 deploys a classifier to decide on MIQPs linearization
~—> Framework and methodology for end-to-end integration of ML into MIP technology



Learning Repeated Decisions

* | earning where to run heuristics Iin

B&B
[Khalil et al. 2017b] iz OR »/Solution

definition

\

* | earning to branch .
[Lodi and Zarpellon 2017] (survey)

State Decision

* | earning gradient descent
e.g. [Andrychowicz et al. 2016]

* Predicting booking decisions under

imperfect information

[Larsen et al. 2018] just a matter
of viewpoint

* |earning cutting plane selection
[Baltean-Lugojan et al. 2018]



Learning Repeated Decisions, an example

Exact combinatorial optimization with graph convolutional neural networks
[Gasse, Chételat, Ferroni, Charlin & Lodi (2019)]

Natural representation : variable / constraint bipartite graph

~€0.0-

min ¢'Xx Co
X

O e
subjectto Ax <Db, €20 @
X € ZP x R"7P. @/92,1 ~ 1

@ v;: variable features (type, coef., bounds, LP solution...)
@ c,: constraint features (right-hand-side, LP slack...)
@ e;,: non-zero coefficients in A




Learning Repeated Decisions, an example (cont.d)

Full Strong Branching (FSB): good branching rule, but expensive.
Can we learn a fast, good-enough approximation?

Behavioral cloning

@ collect D = {(s,a"),...} from the expert agent (FSB)
@ estimate 7*(as) from D
+ no reward function, supervised learning, well-behaved

— will never surpass the expert... Minimum set covering [Balas & Hu (1980)]

W -

Easy Medium Hard

Model Time Wins Nodes Time Wins Nodes Time Wins Nodes

FSB 17.30 0/100 iy S b B U 9 071  S0000 07 0 ha
RPB 898 0/100 54 60.07 0/100 1741 1677.02 4 /65 47299
XTrees 9.28 0/100 187 02.47 0/100 2187 2869.21 0/35 59013
Similar results on: combinatorial auctions, capacitated facility location, SVMrank 8.10 1/100 165 7358 0/100 1915 2389.92 0/47 42120
maximum independent set. A-MART 7.19 14/100 167 59.98 0/100 1925 216596 0 /54 45319
GCNN 6.59 85/100 134 42.48 100 /100 1450 1489.91 66 /70 29981

3 problem sizes

Code online: https://github.com/ds4dm/learn2branch

» 500 rows, 1000 cols (easy), training distribution
» 1000 rows, 1000 cols (medium)
» 2000 rows, 1000 cols (hard)

Pays off: better than SCIP’s default in terms of solving time.
Generalizes to harder problems !
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ML-augmented MILP: Perspectives
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Random Instances
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Decision-aware learning
|

Problem o |
definition Decision Solutlon

* Quadratic Programming
[Amos and Kolter 2017]

* Novel loss functions development
[EImachtoub and Grigas 2022] [Mandi et al. 2022]

* Perturbation or penalization methods
[Mandi and Guns 2020] [Blondel et al. 2020] [Wilder et al. 2019] [Parmentier 2021]




Business Applications

* Many businesses care about
solving similar problems
repeatedly

e Solvers do not make any use of
this aspect

* Power systems and market
[Xavier et al. 2019]

e Schedule 3.8 kWh ($400 billion)
market annually in the US

e Solved multiple times a day

e 12X speed up combining ML
and MILP




Three Tasks

x1, xz, x4
fractional

ML-augmented MILP: Summary / \

Finding feasible
solutions of MILP X2, X4 X2

fractional fractional

x4S2/ \x423 szO/ \x221

Primal Task Dual Task Configuration Task




Summary

e Mixed-Integer Programming is one of the tools of choice for many
applications, and still an active area of research in mathematics.

e The needs for making MILP competitive in many applied contexts have in
common the exploitation of data, for example

e data uncertain,
e “learn” to repeatedly solve the “same instance,”

e pattern discovery.

e QOverall, we start to have (solid) evidence that ML can play a significant role to
deal with those needs and challenges.



