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Outline
The talk is developed in two parts:


• Part 1: Mixed-Integer Linear Programming (MILP), a successful story:

• 75 years of mathematics, algorithms and software development.


• Part 2: MILP at the time of Artificial Intelligence:

• Methodological directions in which the use of Machine Learning is 

changing and will change (?) MILP.


We will finish with some perspectives.



Mixed-Integer Linear Programming: Where?






Mixed-Integer Linear Programming: How?
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MILP evolution, early days



MILP evolution, an interesting experiment



MILP evolution, nowadays key features



MILP building blocks: preprocessing / presolving
• In the preprocessing phase a MILP solver tries to detect certain changes in the input that 

will probably lead to a better performance of the solution process. 

• Generally without “changing” the set of optimal solutions, a notable exception being 

symmetry breaking reductions. 

• There are two different venues for preprocessing. 


1. Model preprocessing:  
MILP models often contain some “garbage”, i.e., redundant or weak information 
slowing down the solution process by forcing the solver to perform useless operations. 
Thus, modern MILP solvers have the capability of cleaning up and strengthen a model 
so as to create a presolved instance on which the MILP technology is then applied. 


2. Algorithmic preprocessing: 
More sophisticated presolve mechanisms are also able to discover important 
implications and sub-structures that might be of fundamental importance later on in the 
computation for both branching purposes and cutting plane generation. 


• Finally, the lower and upper bounds on the objective function and the solution of LPs can be 
used to perform even stronger reduction (known as probing) with the aim of fixing variables. 



MILP building blocks: cutting planes



MILP building blocks: cutting planes (cont.d)



MILP building blocks: cutting planes (cont.d)



MILP building blocks: cutting planes (cont.d)



MILP building blocks: cutting planes (cont.d)



MILP building blocks: branching



MILP building blocks: branching (cont.d)



MILP building blocks: branching (cont.d)



MILP building blocks: branching (cont.d)



MILP building blocks: primal heuristics
• The last 20 years have seen a tremendous improvement in the capability 
of primal heuristics to almost optimal solutions early in the tree.

• However, a very meaningful experiment [Danna 2006] has shown that 
even the knowledge of the optimal solution from the beginning of the 
search only improves on average the MILP running time by a factor of 2.

• In other words, heuristics largely impact on the user perception of the 
quality of a solver, and are fundamental in the real-world context.

• The primal heuristics implemented in the solvers go from very light and 
easy, as variations of the classical rounding of the LP solution, to much 
more heavy and complex, like local search and metaheuristics. 

• As mentioned earlier, a relevant step has been solving MILPs within the 
MILP technology [Fischetti & Lodi 2002].
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Mixed-Integer Linear Programming: The AI Challenge and Opportunity



Preamble and Disclaimer
The use of Machine Learning (ML) for Combinatorial Optimization (CO) — and 
MILP — problems has been ubiquitous in the last 5 to 10 years at the very least.


This is due to the incredible success of ML, especially deep learning, in beating 
human capabilities in image recognition, language processing and sequential 
games.


Those successes led to ask natural questions about using modern statistical 
learning in other disciplines, Combinatorial Optimization being one of them.


The new, recent frontier of Generative Artificial Intelligence is yet another story 
and is not covered by this talk.




Schematic Overview  
Slide courtesy of N. Yorke-Smith

Y. Bengio, A. Lodi, A. Prouvost: Machine Learning for Combinatorial 
Optimization: a Methodological Tour d’Horizon, EJOR 2021, 405-421

J. Kotary, F. Fioretto, P. Van Hentenryck, B. Wilder: End-to-End 
Constrained Optimization Learning: A Survey. IJCAI 2021: 4475-4482



End to End Learning

• Learning TSP solutions 
[Bello et al. 2017][Kool and Welling 2018][Emami and Ranka 2018] 
[Vinyals et al. 2015][Nowak et al. 2017]


• Predict aggregated solutions to MILP under partial 
information 
[Larsen et al. 2018]


• Approximate obj value to SDP (for cut selection) 
[Baltean-Lugojan et al. 2018]

SolutionML
Problem

definition



ML-augmented CO (or MILP) 

L. Scavuzzo, K. Aardal, A. Lodi, N. Yorke-Smith: Machine 
Learning Augmented Branch and Bound for Mixed Integer 
Linear Programming, arXiv:2402.05501, 2024.

Learning to  
configure
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Too long


• Expert knowledge of how to make decisions


• Too expensive to compute


• Need for fast approximation



Too heuristic


• No idea which strategy will perform better


• Need a well performing policy


• Need to discover policies



Question

• Can Machine Learning methods as Imitation Learning, 
Reinforcement Learning and all the recent powerful 
techniques (e.g., Deep Learning) and architectures (e.g., 
Graph Neural Networks) help Combinatorial Optimization 
— particularly MILP — algorithms by dealing with the 
issues above (“too slow” and / or “too heuristic”)?



Requirement

• We want to keep the guarantees provided by (exact) CO/
MILP algorithms, namely, 


• feasibility, and


• sometimes optimality.



Learning Properties

• Use a decomposition method 
[Kruber et al. 2017]


• Linearize an MIQP 
[Bonami et al. 2018]


• Provide initial cancer treatment plans to inverse 
optimization 
[Mahmood et al. 2018]

SolutionML
Problem

definition
ORDecision



Learning Properties, an example



Learning Properties, an example (cont.d)



Learning Repeated Decisions 
• Learning where to run heuristics in 

B&B 
[Khalil et al. 2017b]


• Learning to branch 
[Lodi and Zarpellon 2017] (survey)


• Learning gradient descent 
e.g. [Andrychowicz et al. 2016]


• Predicting booking decisions under 
imperfect information 
[Larsen et al. 2018]


• Learning cutting plane selection 
[Baltean-Lugojan et al. 2018]

SolutionOR
Problem

definition

ML

State Decision

} just a matter 
of viewpoint



Learning Repeated Decisions, an example



Learning Repeated Decisions, an example (cont.d)
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ML-augmented MILP: Perspectives 




Random Images

Random iid pixels Random face (GAN) 
thispersondoesnotexist.com



Random Instances

Random iid coefficients a1c1s1 from MipLib 2017 



Decision-aware learning

• Quadratic Programming 
[Amos and Kolter 2017]

• Novel loss functions development  
[Elmachtoub and Grigas 2022] [Mandi et al. 2022]

• Perturbation or penalization methods  
[Mandi and Guns 2020] [Blondel et al. 2020] [Wilder et al. 2019] [Parmentier 2021]



Business Applications
• Many businesses care about 

solving similar problems 
repeatedly


• Solvers do not make any use of 
this aspect


• Power systems and market 
[Xavier et al. 2019]


• Schedule 3.8 kWh ($400 billion) 
market annually in the US


• Solved multiple times a day


• 12x speed up combining ML 
and MILP



ML-augmented MILP: Summary 




Summary
• Mixed-Integer Programming is one of the tools of choice for many 

applications, and still an active area of research in mathematics.


• The needs for making MILP competitive in many applied contexts have in 
common the exploitation of data, for example


• data uncertain,


• “learn” to repeatedly solve the “same instance,”


• pattern discovery.


• Overall, we start to have (solid) evidence that ML can play a significant role to 
deal with those needs and challenges.


