
Mixed-Integer Programming:
75 years of history and the

Artificial Intelligence challenge
Andrea Lodi

andrea.lodi@cornell.edu

CERMICS Colloquium
Paris, February 9, 2024 @

École des Ponts, ParisTech

1

mailto:andrea.lodi@cornell.edu

Outline
The talk is developed in two parts:

• Part 1: Mixed-Integer Linear Programming (MILP), a successful story:

• 75 years of mathematics, algorithms and software development.

• Part 2: MILP at the time of Artificial Intelligence:

• Methodological directions in which the use of Machine Learning is

changing and will change (?) MILP.

We will finish with some perspectives.

Mixed-Integer Linear Programming: Where?

Mixed-Integer Linear Programming: How?

6

OPT
Search tree nodes

min
x

cTx s.t. Ax ≤ b, x ∈ {0,1}n

Gap

Primal bound: value
of best solution so far

Dual bound: min. value of
LP relaxation at frontier Value of LP

relaxation at
root node

!" = 0 !" = 1

!& = 0!' = 0

!& = 0 !& = 1

!& = 1

2.2 1.0

7.3

Objective value

Slide courtesy of E. Khalil

MILP evolution, early days

MILP evolution, an interesting experiment

MILP evolution, nowadays key features

MILP building blocks: preprocessing / presolving
• In the preprocessing phase a MILP solver tries to detect certain changes in the input that

will probably lead to a better performance of the solution process.

• Generally without “changing” the set of optimal solutions, a notable exception being

symmetry breaking reductions.

• There are two different venues for preprocessing.

1. Model preprocessing:  
MILP models often contain some “garbage”, i.e., redundant or weak information
slowing down the solution process by forcing the solver to perform useless operations.
Thus, modern MILP solvers have the capability of cleaning up and strengthen a model
so as to create a presolved instance on which the MILP technology is then applied.

2. Algorithmic preprocessing: 
More sophisticated presolve mechanisms are also able to discover important
implications and sub-structures that might be of fundamental importance later on in the
computation for both branching purposes and cutting plane generation.

• Finally, the lower and upper bounds on the objective function and the solution of LPs can be
used to perform even stronger reduction (known as probing) with the aim of fixing variables.

MILP building blocks: cutting planes

MILP building blocks: cutting planes (cont.d)

MILP building blocks: cutting planes (cont.d)

MILP building blocks: cutting planes (cont.d)

MILP building blocks: cutting planes (cont.d)

MILP building blocks: branching

MILP building blocks: branching (cont.d)

MILP building blocks: branching (cont.d)

MILP building blocks: branching (cont.d)

MILP building blocks: primal heuristics
• The last 20 years have seen a tremendous improvement in the capability
of primal heuristics to almost optimal solutions early in the tree.

• However, a very meaningful experiment [Danna 2006] has shown that
even the knowledge of the optimal solution from the beginning of the
search only improves on average the MILP running time by a factor of 2.

• In other words, heuristics largely impact on the user perception of the
quality of a solver, and are fundamental in the real-world context.

• The primal heuristics implemented in the solvers go from very light and
easy, as variations of the classical rounding of the LP solution, to much
more heavy and complex, like local search and metaheuristics.

• As mentioned earlier, a relevant step has been solving MILPs within the
MILP technology [Fischetti & Lodi 2002].

21

Default Plugins

SCIP Primal
Heuristic

actcons
diving

coef
diving

cross
over dins

feaspump

fixand
infer

fracdiving

guided
diving

intdiving

int
shifting

linesearch
diving

local
branching

mutation

subnlp

objpscost
diving

octane

oneopt

pscost
diving

rensrins

rootsol
diving

rounding

shifting

shift&
prop

simple
rounding

trivial

trysol

twooptunder
cover

veclen
diving

zi round

Variable

Event

default

Branch

allfull
strong

full
strong

infer
ence

leastinf

mostinf

pscostrandom

relps
cost

Conflict

Constraint
Handler

and

bound
disjunc.

count
sols cumu

lative

indi
cator

integral

knap
sack

linear

linking

logicor

or
orbi
tope

quadr
atic

setppc

soc

sos1

sos2

var
bound

xor

Cutpool

LP

clp

cpxmsk

none

qso

spx

xprs

Dialog

default

Display

default

Node
selector

bfs

dfs

estimate

hybrid
estim

restart
dfs

· · ·

Presolver

bound
shift

dualfix

implics

intto
binary

probing

trivial

Impli
cations

Tree

Reader

ccg

cip

cnf

fix

lp

mps opb

ppm

rlp

sol

sos

zpl

Pricer

Separator

clique

cmir

flow
cover

gomory

implied
bounds intobj

mcf

odd
cycle

rapid
learn

redcost

strong
cg

zero
half

Propa
gator

pseudo
obj

root
redcost

vbound

Relax

Gregor Hendel, hendel@zib.de – SCIP Introduction 66/70

https://www.scipopt.org/

https://www.scipopt.org/

Mixed-Integer Linear Programming: The AI Challenge and Opportunity

Preamble and Disclaimer
The use of Machine Learning (ML) for Combinatorial Optimization (CO) — and
MILP — problems has been ubiquitous in the last 5 to 10 years at the very least.

This is due to the incredible success of ML, especially deep learning, in beating
human capabilities in image recognition, language processing and sequential
games.

Those successes led to ask natural questions about using modern statistical
learning in other disciplines, Combinatorial Optimization being one of them.

The new, recent frontier of Generative Artificial Intelligence is yet another story
and is not covered by this talk.

Schematic Overview
Slide courtesy of N. Yorke-Smith

Y. Bengio, A. Lodi, A. Prouvost: Machine Learning for Combinatorial
Optimization: a Methodological Tour d’Horizon, EJOR 2021, 405-421

J. Kotary, F. Fioretto, P. Van Hentenryck, B. Wilder: End-to-End
Constrained Optimization Learning: A Survey. IJCAI 2021: 4475-4482

End to End Learning

• Learning TSP solutions 
[Bello et al. 2017][Kool and Welling 2018][Emami and Ranka 2018] 
[Vinyals et al. 2015][Nowak et al. 2017]

• Predict aggregated solutions to MILP under partial
information 
[Larsen et al. 2018]

• Approximate obj value to SDP (for cut selection) 
[Baltean-Lugojan et al. 2018]

SolutionML
Problem

definition

ML-augmented CO (or MILP)

L. Scavuzzo, K. Aardal, A. Lodi, N. Yorke-Smith: Machine
Learning Augmented Branch and Bound for Mixed Integer
Linear Programming, arXiv:2402.05501, 2024.

Learning to
configure

27

Too long

• Expert knowledge of how to make decisions

• Too expensive to compute

• Need for fast approximation

Too heuristic

• No idea which strategy will perform better

• Need a well performing policy

• Need to discover policies

Question

• Can Machine Learning methods as Imitation Learning,
Reinforcement Learning and all the recent powerful
techniques (e.g., Deep Learning) and architectures (e.g.,
Graph Neural Networks) help Combinatorial Optimization
— particularly MILP — algorithms by dealing with the
issues above (“too slow” and / or “too heuristic”)?

Requirement

• We want to keep the guarantees provided by (exact) CO/
MILP algorithms, namely,

• feasibility, and

• sometimes optimality.

Learning Properties

• Use a decomposition method 
[Kruber et al. 2017]

• Linearize an MIQP 
[Bonami et al. 2018]

• Provide initial cancer treatment plans to inverse
optimization 
[Mahmood et al. 2018]

SolutionML
Problem

definition
ORDecision

Learning Properties, an example

Learning Properties, an example (cont.d)

Learning Repeated Decisions
• Learning where to run heuristics in

B&B 
[Khalil et al. 2017b]

• Learning to branch 
[Lodi and Zarpellon 2017] (survey)

• Learning gradient descent 
e.g. [Andrychowicz et al. 2016]

• Predicting booking decisions under
imperfect information 
[Larsen et al. 2018]

• Learning cutting plane selection 
[Baltean-Lugojan et al. 2018]

SolutionOR
Problem

definition

ML

State Decision

} just a matter
of viewpoint

Learning Repeated Decisions, an example

Learning Repeated Decisions, an example (cont.d)

ExperienceDecision?
π̂ml

^action reward
score

max return

Decision?

πexpert

π̂ml ^action

action

min distanceDemonstration

Learning Methods

ML-augmented MILP: Perspectives

Random Images

Random iid pixels Random face (GAN) 
thispersondoesnotexist.com

Random Instances

Random iid coefficients a1c1s1 from MipLib 2017

Decision-aware learning

• Quadratic Programming 
[Amos and Kolter 2017]

• Novel loss functions development  
[Elmachtoub and Grigas 2022] [Mandi et al. 2022]

• Perturbation or penalization methods  
[Mandi and Guns 2020] [Blondel et al. 2020] [Wilder et al. 2019] [Parmentier 2021]

Business Applications
• Many businesses care about

solving similar problems
repeatedly

• Solvers do not make any use of
this aspect

• Power systems and market 
[Xavier et al. 2019]

• Schedule 3.8 kWh ($400 billion)
market annually in the US

• Solved multiple times a day

• 12x speed up combining ML
and MILP

ML-augmented MILP: Summary

Summary
• Mixed-Integer Programming is one of the tools of choice for many

applications, and still an active area of research in mathematics.

• The needs for making MILP competitive in many applied contexts have in
common the exploitation of data, for example

• data uncertain,

• “learn” to repeatedly solve the “same instance,”

• pattern discovery.

• Overall, we start to have (solid) evidence that ML can play a significant role to
deal with those needs and challenges.

