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What regularity properties lead to low-dimensional
approximations of f(z) for a high-dimensional z € R?

in physics and machine learning 7

e f(x): class of an image x oy Emergy of a physical system

having d = 10° pixels in a state x € RY
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o f(x) can be approximated from examples {x;, f(x;)}; by

local interpolation if f is regular and there are close examples:

famN
=

e Need n > ¢~ ¢ points to cover [0,1]¢ at a

Huclidean distance e

Problem: |[x — x;|| is always large

e To estimate f(x) when x is in a high-dimensional ()

requires strong reqularity of f in () : what regularity 7



e Deep convolutional neural network to predict y = f(x):
= Rd Y. LeCun
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channels channels Scale axis
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L;: spatial convolutions and linear combination of channels

Exceptional results for classification of images, sounds, language,
regressions in physics, signal and tmage generation...
but not interpretable.

To create simpler interpretable networks:
What underlying regularity is captured and how 7

3 ingredients: Multiscale, Linearize group actions, Sparse
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i ,-I:';ggIE _ Scale Separation and Interactiom'i

e Dimension reduction:

Interactions de d bodies represented by xz(u): particles, pixels...

Interactions @
across scales
» UD

Multiscale regroupement of interactions of d bodies

into interactions of O(logd) groups.

Scale separation = wavelet transforms.

Critical
harmonic analysis
problems since 1970’s

How to capture scale interactions 7
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Overview: Simpler Networks

e Scale separation with wavelets and interactions through phase

e Linear scale interaction models and invariants 1n:
- Statistical physics for turbulence
- Quantum chemistry and 1image classification

e Non-linear scale interactions models with sparse dictionaries in:
- Classification of complex structures as in ImageNet
- Generation of non-ergodic processes



o Wavelet filter (u): | +1 =

e cale separation with Wavelets -

rotated and dilated: ¥y (u) = 27 (27 rgu)

v, imaginary parts
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real parts

e Wavelet transform: invertible

Wax = ($*¢>\)

A

Fourier
W

/\ A

zx Pa(w) = T(w) Ya(w)

e Zero-mean and no correlations across scales: problem!

Zx*%( x* Py (u Z|ﬂf )2 a(w

Pa(w) =0 if N# N
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Dependant across scales
but not correlated
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What stochastic models
for turbulence ?

Prior: stationary < p(x) is invariant to translations.

Maximum entropy distribution p conditioned by M moments

3(6m(@) = = fla) = 2" exp - f_j B () )

With M = d second order moments:

Om(x) =D, z(w)x(u —m) = p(x)is a Gaussian distribution



What stochastic models
for turbulence ?

£z
d=610%

p

No correlation is captured across scales and frequencies.
Random phases.

How to capture non-Gaussianity and long range interactions 7
Failure of high order moments. Deep net generations look better.



Rectifiers act on Phase

e Real wavelets of phase a: 1), \ = Real(e ")y )
Rectifier: p(a) = max(a, 0)

Ux(u,a,\) = p(z * Real(e"® 1)) = p(Real(e"® z x 1))
T x s = |z * 1y P (TxPy)
Homogeneous: p(aa) = ap(a) if a > 0

Ux(u, &, )‘) — ‘ZE x %\ IO(COS(O‘ T+ SO(CE x %))

A Relu computes phase harmonics:

Theorem : Fourier transform along the phase a:
ﬁat(u, ]C, )\) — ﬁ/(k‘) |Qj * wA(u)‘ eikgp(w*wk(u))

with v(«) = p(cos «) for any homogeneous non-linearity p.



Frequency Transpositions

Phase harmonics: |z * 1) (u)] el kp(zxpr(u))

Performs a non-linear frequency dilation / transposition

not correlated with no time dilation

N\

T * Py (w) x*w)\/(w)

o
=1y = J W

Phase
Harmonics

Correlated if kX =~ )\



Real wavelets: 1, » = Real(e™** ) and p(a) = max(a, 0)

Fourier transform ik
@ (T* A
P(Z * a2 along o - Ck [T *Pa|e ( )
Harmonics
L &2
A w]_
>

Correlatec
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>

Phase harmonics:
Frequency transpositions



Models of Stationary Processes
Sixin Zhang

Maximum entropy distribution conditioned by

M = O(log” d) wavelet harmonic correlations E(¢,,(z))

Om () = Z 2%y (w)] PP 0 why, ()| e e @xa ()

u

p(z) = Z7" exp ( — i Bm ¢m(x))



ENS
d=610*

» ~ ‘ - -
. L 4

' &sErgodic Stationary Processes =
S. Zhang, J. Bruna, E. Allys, F. Levrier, F. Boulanger
\ a - . b . ) LA ‘.-.

€T
. 1,-'\ '
M = 3103 Phase coherence is restored
number

How much physics are these models capturing 7
What about non-ergodic processes 7

of moments



Scattering Wavelet Coefficients

Classification: invariance by translation by spatial averaging
( T * o (270) >
p(x *xhap) *ds(27n) )

Recover the information loss with a second layer:

T * Pqu(271)
Sjx =Ux*x ¢y = p(2 % Ya,n) * ¢ 5(27n)
p(p(x * P n) * i ar) * P5(270) RN

- Linearize small deformations
Theorem if D .x(u) =x(u— 7(u)) then
lim ||SyDr;x — Syz|| < Cl|VT| |||

J— 00



o Can we |

with £ = <

earn the interaction energy f(x) of a system

Symmetries:

positions, Charges} ?

f(z) is invariant to translations and rotations,

multiscale interactions: chemical bounds, Van der Waal forces...

The energy depends upon the electronic density (Kohn-Sham)

Ground state
electronic density
computed with Schroedinger




Dirac Electronic Density

e We do not know the electronic density at equilibrium.

e The molecular state {zx, rr }r<q is represented

by Diracs located at r, weighted by charges z:
d

r(u) = Z 2 0(u — rp)
k=1

. . Dirac density
Electronic density 2 (w)

18






Scattering Energy Regression a';

ckenberg, G. Excarchakis M. Hirn, N. Poilvert, L. Thiry

Invariants to

Translations
. p(p(x * Vo ) * Var ) Rotation:

Sx

Linear Linear 5
| > [Regression[ f (a;' )

Averaging

2
Olog™ d) supervised
convolutional neural network without learning S learning

QM9: Data basis of 130.000 organic molecules with C, H, O, N, F’
with DFT atomisation energies

Regression error ~ 0.5 kcal/mol ~ Deep Nets.

But small molecules with at most 29 atoms and 9 heavy ones
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i Image Classification 7. Bruna =g

o [}
Multiscale *¢ 7 Linearize
— Spatial Linear ~
’ /0(,0(37 - wa)\) * wa/’x ) I Averaging —| [ 7| Classifier —>f(x)

supervised
Sx  learning

convolutional neural network without 1earnimg_>

Errors: Scattering : Deep Nets.
Digits 0 55
10 classes | %
Textures 5
60 classes 0.5 %
ImageNet AlexNet
60% ' 20% : 2012

103 cl
07 classes What is learned ?
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1L Sparse Dictionary Representation =

e Need to learn ”"sparse informative patterns”

Pattern representations with sparse dictionary expansions:

T D

| O

XX

Sparse 1! expansion of z in D: y

L

Z

e How to minimise this convex cost ?



A\ ks, Homotopy ISTA Network =

o Hombtopy algorithms decrease the multiplier ay:

z = argmin ||Z — DZ||% + ax || 2|1
<

with an iterated soft-threshold decreasing thresholds:
—k
2pp1 = To, (D'2+ (I — D'D)z,) 227, »

k — o0

where T, (a) = sign(a) max(|a] — «, 0) is a soft-thresholding.

e Implemented with a convolutional network ot depth K:

e e e e e e s e o e e e e e s e e S R e Smae Smma e Smae mmae S e S R e Smae mmae e e e e

ISTA-Net(D)

with a convolutional dictionary D



e Deep network with sparse coding and classification:

11 sparse coding in D

T —| D! |5
: é—y/_/ o|Id — D'D ;é %—p/—/—bfd—DtD >$J—>(ﬂassiﬁer

— f(z)

e —-——— e - - e e . e e . . T S e S e S s e S SEae EEae e Eas s

ISTA-Net(D)

e Optimize the dictionary D and the classifier to minimize

the classification loss over a supervised data basis {x;, y; }::

Loss(D) = Z loss(y;, JF(%))

e Stochastic gradient descent



ImageNet Classification ot

J. Za’rka L Thiry, T. Angles

ImageNet

10° classes

Spatial | Sw . ¢
T —y ,0(,0(:13 * wa)\) * wa,)\,).—p Alzraerlaaging — | Classifier f(x) 60% error

Learned sparse coding

- < ~
T —> IST‘% et — | Classifier > f(x) 50% error

. . 18% error
Multiscale Scattering  Linearize Learned sparse coding

Spatial | S [ISTA-Net| 2 . ;
T — p(p(@ * o) * Yo ) | veraging| | p || Clessifier> f ()

Interpretable network : patterns stored in D AlexNet: 20% error

Why such an error reduction 7 Linearize classes in separate spaces



Non Ergodic Processes :

autoencoder: trained on n examples {x;}i<n

Encoder (Gaussian white Decoder

w

Network trained on bedroom images:
w = awi + (1 — a)ws
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Encoder . .
| Nearly Low-dimensional
Multiscale (Gaussian (Gauss. white noise
Ux Spatial Linear
p(P(T * Ya,n) * Yo ar) [— Averaging — Whitening]

L : linear mixing
central limit theorem

(zenerator

U has a linear inverse Ut : p(a) + p(—a) = a
L is non-invertible linear projector

Regularization: inversion in a dictionary D where Ux is sparse
Compute z such that Uz = Dz where z is sparse

Non-linear multiscale model

F=Generation as an Inverse Problem .=
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::J.F"Generation as an Inverse Problem .-

Inversion: Tomas Angles

T
IT' ek
Generator |— ”’3
L kg

U has a linear inverse U !, L is non-invertible linear projector

Inversion in a dictionary D where Ux is sparse:
Ur=Dz = w=LUx=LDz

compute sparse z from w in LD
Sparse coding N

- z Ux _
W —> ISTLADNet—P D ol U — &

e How to optimise the dictionary D 7

Learn the dictionary D by minimizing Y. ||x; — Z;]|*

with a stochastic gradient descent on a training set {z;};
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' Training Reconstruction
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Celebrities Data Basis 1omas Angles Bedrooms




| Generative Interpolations "
Toma

ENS
Celebrities mdas Angles
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Tomas Angles

Syntheses with different input noises

original averaged

(zenerator
>
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anhdom Generations from Noise :

Tomds Angles

~——

ISTA-Net| < Ux — ~
w —>| D >U1—>Cl?

Bedrooms




S '"E Conclusion =

e Deep neural network are complex computational machines whose
flexibility can be compared with Turing machines.

e A Relu on multiscale filters can produce scale interactions:
creates phase harmonics, 1t may also be used to compute sparse
representations, or piecewlinear approximations.

e One can define structured networks which are interpretable:
similar to a structured program, with state of the art results.

e Still need functional analysis models and approximation
theorems with decay rates.



