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 High-Dimensional Approximations

• f(x): class of an image x

having d = 106 pixels

energy of a physical system

in a state x 2 Rd

approximations of f(x) for a high-dimensional x 2 Rd

in physics and machine learning ?

What regularity properties lead to low-dimensionalY LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

• f(x) = p(x) a probability density. Entropy = E(� log p(x))

or



     Curse of Dimensionality

local interpolation if f is regular and there are close examples:

• f(x) can be approximated from examples {xi , f(xi)}i by

?x

Problem: kx� xik is always large
• Need n � ✏�d points to cover [0, 1]d at a Euclidean distance ✏

requires strong regularity of f in ⌦

• To estimate f(x) when x is in a high-dimensional ⌦

: what regularity ?



    Deep Convolutional Network 
• Deep convolutional neural network to predict y = f(x):

Lj : spatial convolutions and linear combination of channels

L1

Lj

⇢(a) = max(a, 0): Relu

⇢

⇢ linear

Scale axis

f̃(x)

x 2 Rd

low dimension

Y. LeCun

Exceptional results for classification of images, sounds, language,

regressions in physics, signal and image generation...

What underlying regularity is captured and how ?

but not interpretable.

To create simpler interpretable networks:

Multiscale3 ingredients: , Linearize group actions, Sparse



u1

u2

Multiscale regroupement of interactions of d bodies

into interactions of O(log d) groups.

) wavelet transforms.Scale separation

Interactions
across scales

 Scale Separation and Interactions 
           

Interactions de d bodies represented by x(u) : particles, pixels...

How to capture scale interactions ?

• Dimension reduction:

Critical
harmonic analysis
problems since 1970’s



  Overview: Simpler Networks

• Scale separation with wavelets and interactions through phase 

• Linear scale interaction models and invariants in: 
– Statistical physics for turbulence 
– Quantum chemistry and image classification 

• Non-linear scale interactions models with sparse dictionaries in: 
– Classification of complex structures as in ImageNet 
– Generation of non-ergodic processes



rotated and dilated:

 Scale separation with Wavelets

• Wavelet transform:

Wx =
⇣
x ?  �

⌘

�

• Wavelet filter  (u):

�1

�2

 ̂2j ,✓(!)

+ i

real parts imaginary parts✓ Fourier

\x ?  �(!) = x̂(!)  ̂�(!)

 �(u) = 2�2j  (2�jr✓u)

invertible

• Zero-mean and no correlations across scales:
X

u

x ?  �(u)x ?  
⇤
�0(u) =

X

!

|bx(!)|2  �(!) �(!)
⇤ ⇡ 0 if � 6= �0

problem!
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CHAPTER 2. TRANSLATION SCATTERINGAND CONVOLUTIONAL NETWORKS34
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Figure 2.3: Three Morlet wavelet families with different sets of parameters. For each
set of parameters, we show, from left to right, the gaussian window φJ , all the Morlet
wavelets ψθ,j, and the associated Littlewood Paley sum A(ω). When the number of scales
J increases, so does the width of the low pass wavelet φJ . When the number of orientations
C increases or when the number of scales per octave Q decreases, the Morlet wavelets
become more elongated in the direction perpendicular to their orientation, and hence have
an increased angular sensitivity.
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Dependant across scales
but not correlated



       Stat. Physics of Stationary Proc.

d = 6104
x

Prior: stationary , p(x) is invariant to translations.

Maximum entropy distribution p̃ conditioned by M moments

E(�m(x)) = µm ) p̃(x) = Z�1 exp
⇣
�

MX

m=1

�m �m(x)
⌘

p̃(x) is a Gaussian distribution

With M = d second order moments:

�m(x) =
P

u x(u)x(u�m) )

What stochastic models
for turbulence ?



       Gaussian Models of Stationary Proc.

d = 6104
x

x̃

Figure 2: Gradient descent microcanonical model conditioned on wavelet covariance matrix.

First and second column: data and model sample of Ergodic 1/f process. Third and fourth

column: data and model sample of Turbulence 2d.

Ergodic 1/f process. But visually it is not suitable for Turbulence 2d. The model

fails to capture the intermittency and the oriented structures such as tourbillon. We

discuss in the next section how to improve the model by capturing the non-linear phase

interactions using the wavelet phase harmonics.

3 Wavelet Phase Harmonic Covariance

We are going to capture the phase interactions between wavelet coe�cients. This can

be achieved by the phase harmonics which multiply the phase of wavelet coe�cients

by integers without changing their modulus. The wavelet coe�cients get non-linearly

transposed in frequency. It creates scale interactions when we compute their covari-

ance. Section 3.1 introduces the wavelet phase harmonics. They generalize the local

phase used in [8]. We also reveal their connections with the rectifier non-linearity com-

monly used in convolutional neural network (CNN) in deep learning [22]. Section 3.2

introduces the wavelet phase harmonic covariance. We get a new sparse covariance

matrix which extends the wavelet covariance matrix. Improvements of the gradient-

descent microcanonical models are shown on Turbulence and Texture processes. We

discuss the connection with cross-scale phase statistics in [8] and the gram matrix of

the features maps in CNN [10, 11] to model textures.

3.1 Frequency transposition with wavelet phase harmon-

ics

To capture the phase interaction across scales, we introduce wavelet phase harmon-

ics. By multiplying the phase of complex wavelet coe�cients by integers (aka. phase

harmonics), the frequency of the resulting coe�cients gets transposed in the Fourier

domain. We illustrate this non-linear phenomenon on Gaussian white noise. As wavelet

coe�cients, these coe�cients remain stationary and have variance of the same order.

Fourier analysis on phase harmonics reveals an interesting connection with the rectifier

non-linearity commonly used in CNN.

7

What stochastic models
for turbulence ?

p̃(x) is a Gaussian distribution

How to capture non-Gaussianity and long range interactions ?

Deep net generations look better.Failure of high order moments.

No correlation is captured across scales and frequencies.
Random phases.



     Rectifiers act on Phase

Ux(u,↵,�) = ⇢(x ? Real(ei↵  �)) = ⇢(Real(ei↵ x ?  �))

Ux(u,↵,�) = |x ?  �| ⇢(cos(↵+ '(x ?  �))

Homogeneous: ⇢(↵a) = ↵⇢(a) if ↵ > 0

for any homogeneous non-linearity ⇢.

Fourier transform along the phase ↵:Theorem :

with �(↵) = ⇢(cos↵)

bUx(u, k,�) = �̂(k) |x ?  �(u)| eik'(x? �(u))

A Relu computes phase harmonics:

x ?  � = |x ?  �| ei'(x? �)

• Real wavelets of phase ↵:  ↵,� = Real(e�i↵  �)

Rectifier: ⇢(a) = max(a, 0)



   Frequency Transpositions

Phase harmonics:

Correlated if k� ⇡ �0

k = 1

k = 2

k = 3

� 2� 3�

\x ?  �(!)

!

!

!

�

Performs a non-linear frequency dilation / transposition

with no time dilation

\x ?  �0(!)

�0

[x ?  �]
k = |x ?  �(u)| ei k'(x? �(u))

not correlated

Phase

Harmonics



 Rectified Wavelet Coefficients

⇢(x ?  ↵,�)

�1

�2

�1

�2

Frequency transpositions
Phase harmonics:k = 2

k '(x ?  �)

Correlated

|x ?  �| '(x ?  �)

Real wavelets:  ↵,� = Real(e�i↵  �) and ⇢(a) = max(a, 0)

Fourier transform
along ↵

Harmonics

ck |x ?  �| eik'(x? �)



        Models of Stationary Processes

x

Sixin Zhang

E(�m(x))

p̃(x) = Z�1 exp
⇣
�

MX

m=1

�m �m(x)
⌘

Maximum entropy distribution conditioned by

M = O(log2 d) wavelet harmonic correlations

�m(x) =
X

u

|x ?  �(u)| eik'(x? �(u)) |x ?  �0(u)| e�ik0'(x? �0 (u))



         Ergodic Stationary Processes
d = 6104

x

x̃

number
of moments

E. Allys, F. Levrier, F. Boulanger

M = 3103 Phase coherence is restored
How much physics are these models capturing ?

What about non-ergodic processes ?

J. Bruna,S. Zhang,



     Scattering Wavelet Coefficients

if D⌧x(u) = x(u� ⌧(u)) then

lim
J!1

kSJD⌧x� SJxk  C kr⌧k1 kxk

Theorem

- Linearize small deformations

SJx = Ux ? �J =

0

@
x ? �2J (2

Jn)
⇢(x ?  ↵,�) ? �J(2Jn)

⇢(⇢(x ?  ↵,�) ?  j0,↵0) ? �J(2Jn)

1

A

↵,�,↵0,�0

✓
x ? �2J (2

Jn)
⇢(x ?  ↵,�) ? �J(2Jn)

◆

↵,�

Classification: invariance by translation by spatial averaging

Recover the information loss with a second layer:



Quantum Chemistry: N-Body Problem

• Can we learn the interaction energy f(x) of a system

with x =
n
positions, charges

o
?

Ground state
electronic density
computed with Schroedinger

The energy depends upon the electronic density (Kohn-Sham)

multiscale interactions: chemical bounds, Van der Waal forces...

f(x) is invariant to translations and rotations,



       Dirac Electronic Density
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Scattering Regression of Quantum Energies Hirn, Mallat, Poilvert

(a) Ground state electronic density

(b) Dirac model (c) Atomic density model

(d) Core electron density model (e) Valence electron density model

Figure 2: Electronic density and associated models.
(a): Ground state electronic density of a planar molecule, restricted to its plane,
and computed by DFT.
(b-e): Non-interacting density models, with a Dirac model in (b), an atomic
density model computed by DFT in (c), which is subdivided into core electrons
in (d) and into valence electrons in (e).

13

Electronic density

by Diracs located at rk weighted by charges zk:

• The molecular state {zk , rk}kd is represented

Scattering Regression of Quantum Energies Hirn, Mallat, Poilvert

(a) Ground state electronic density

(b) Dirac model (c) Atomic density model

(d) Core electron density model (e) Valence electron density model

Figure 2: Electronic density and associated models.
(a): Ground state electronic density of a planar molecule, restricted to its plane,
and computed by DFT.
(b-e): Non-interacting density models, with a Dirac model in (b), an atomic
density model computed by DFT in (c), which is subdivided into core electrons
in (d) and into valence electrons in (e).

13

.
..

.

. .
.. .

Dirac density

x(u) =
dX

k=1

zk �(u� rk)

x(u)

• We do not know the electronic density at equilibrium.



    Harmonic Wavelet Interferences

19

` = 0 ` = 1 ` = 2 ` = 3

j = 0

j = 1

j = 5

x =
X

k

zk�(u� rk) ) ⇢
⇣
x ?  2j ,`(u)

⌘
= ⇢

⇣X

k

zk  2j ,`(u� rk)
⌘

x(u)



      Scattering Energy Regression
M. Eickenberg, G. Excarchakis M. Hirn, N. Poilvert, L. Thiry

Solid Harmonic Scattering Invariants 4

FIG. 2. ME: attempts at capturing full-core-valence densities
with circles and coloring and as 3D mesh plots. File with
bonds provided. Script provided Full atomic, core electronic,
and valence density images, thresholded and color-coded by
charge count. As a general rule, the core density image does
not show Hydrogen atoms.

a Gaussian, which localizes their support around 0. De-
composing angular frequencies using spherical harmonics
will facilitate the computation of rotational invariants,
which are described in Section IIC. Dilations of  m

` at
the scale 2j are given by:

 
m
j,`(u) = 2�3j

 
m
` (2�j

u).

Figure 3 plots slices of their response in R3.
Solid harmonic wavelets are of the same functional

form as Gaussian-type orbitals (GTOs)30, which are of-
ten used in computational quantum chemistry, e.g. as
basis set for the Kohn-Sham orbitals in DFT. In these
approaches one electronic density may be made up of a
linear combination of hundreds of atom-centered GTOs,
in which several GTOs are used to model each electron
orbital of each atom and the corresponding electronic in-
teractions that make up the bonds in the system.

Here we use the solid harmonic wavelets in a di↵erent
fashion. A solid harmonic wavelet transform tests the
density ⇢ against each solid harmonic wavelet  m

j,`, and

at each spatial location u 2 R3:

W⇢ =
�
⇢ ⇤  m

j,`(u)
 
,

where the scales go from j = 0, . . . , J�1, and the angular
frequency bands go from ` = 0, . . . , L� 1, for prescribed
values of J and L. The wavelet coe�cients W⇢ sepa-
rate the geometry of ⇢ into di↵erent scales j and angular
frequency bands `. The additional frequency variable
m further subdivides the angular frequency information,
while the spatial variable u is necessary due to the local-
ization of the waveform, and encodes the response of ⇢
against  m

j,` at this location.

FIG. 3. Solid harmonic wavelets real parts at fixed scale
viewed on an o↵-center slice at fixed x-value. For a given `,
the global order of oscillation is always the same, but across
di↵erent values of m, the oscillations are traded o↵ between
the visible plane and the sliced z-dimension. The planar cuts
are also circular harmonics

In the case of the core density ⇢corex , the solid harmonic
wavelet coe�cients can be written as:

⇢
core
x ⇤  m

j,`(u) =
X

k

ckg ⇤  m
j,`(u� rk).

Since g ⇤ m
j,` is simply another Gaussian type orbital, we

may view these coe�cients as emitting the same GTO
from each atom, scaled to have height equal to the num-
ber of core electrons. It results that these coe�cients
encode interferences of the solid harmonic waveforms at
di↵erent scales. The valence and total densities fur-
ther refine these interferences, by incorporating informa-
tion about potential bonds. For small scales, these in-
terferences resemble those found in the computation of
electronic orbitals in computational chemistry software.
Solid harmonic wavelet coe�cients resulting from larger
scale waveforms aggregate subgroups of atoms within
the system, and encode macroscopic geometric patterns.
While these coe�cients do not have direct analogues in
classical density estimation procedures, they are required
for deriving invariant coe�cients that can be used to
model long range interactions within the system.

convolutional neural network without learning

Solid Harmonic Scattering Invariants 5

FIG. 4. Solid harmonic wavelet modulus coe�cients
U [j, `]⇢valencex of a planar molecule from the QM9 dataset, for
` = 1, 2, 3 oscillations and five scales. Depending on angu-
lar frequency and scale, di↵erent interference patterns arise,
which capture complementary aspects of the molecule

C. Solid harmonic wavelet invariants

Although the solid harmonic wavelet coe�cients {⇢ ⇤
 
m
j,l} form a complete representation of ⇢, they are not

suitable as input to a regression for global chemical prop-
erties. Indeed, a translation of ⇢ results in a translation
of the wavelet coe�cients, which is manifested by trans-
lating the spatial variable u. Rotations of ⇢ similarly
rotate the variable u, but also redistribute the wavelet
coe�cients across the m angular frequencies within each
angular frequency band `. Using these coe�cients in a
naive regression would require the regression to learn all
invariance properties that we already know, entailing a
very high sample complexity. This is addressable by com-
puting coe�cients with the same invariances as the target
model. Thus in order to obtain invariant coe�cients to
rotations of the state x, we first aggregate the energy of
the solid harmonic wavelet coe�cients across m:

U [j, `]⇢(u) =

 
X̀

m=�`

|⇢ ⇤  m
j,`(u)|2

!1/2

.

One may think of U [j, `]⇢ as a type of modulus opera-
tor. Indeed, it eliminates the rotational phase subspace
information from the wavelet coe�cients, and one can
prove that the resulting coe�cients are covariant to both
translations and rotations (meaning that a translation or
rotation of ⇢ results in the same translation or rotation
of U [j, `]⇢). See Figure 4 for plots of U [j, `]⇢x.

It follows from this covariance property that rigid mo-
tion invariant coe�cients may be obtained by integrating

over u:

S⇢[j, `, q] =

Z

R3

|U [j, `]⇢(u)|q du,

=

Z

R3

 
X̀

m=�`

|⇢ ⇤  m
j,`(u)|2

!q/2

du.

We refer to S⇢[j, `, q] as first order solid harmonic wavelet
scattering coe�cients. Each value S⇢[j, `, q] collapses
U [j, `]⇢ (illustrated by a single box in Figure 4) into
a single coe�cient. They give invariant descriptions of
the state x that are stable to deformations of the atomic
positions. Furthermore, they separate the scales of the
system by aggregating geometric patterns related to the
arrangement of the atoms and bonds at each scale.
The power q = 1 scales linearly with the number

of electronic particles modeled by the density ⇢, while
q = 2 encodes pairwise interactions, which are related
to electrostatic Coulomb interactions in26. Specifically,
the wavelet modulus at ` = 1, U [j, 1]⇢, computes the
gradient magnitude of the density at scale j. When in-
tegrated over space with q = 1, this results in the total
variation of the scaled density, a quantity well-known in
computer-vision. It measures the lengths of density level
sets with emphasis on inflection lines. At a su�ciently
large scale, it measures the perimeter of the molecule. See
the first line of figure 4. This quantity is also a summary
of derivatives in atom position.
ME: [[see appendix behind bibliography for a deriva-

tion of S[j, 1, 1]⇢ = TV (⇢ ⇤ gj) (subsection B of ap-
pendix)]] Other powers of the modulus are less easy to
interpret, but it can be generally stated that fractional
powers attribute more importance to small values, lead-
ing towards equalization between small and large modu-
lus peaks, whereas large powers focus more and more on
global peak density values.
First order solid harmonic scattering coe�cients ini-

tially encode the state x in a family of Gaussian densities
⇢x, and utilize spherical harmonics to obtain rotational
invariants; in this regard they are similar to the smooth
overlap of atomic positions (SOAP) algorithm introduced
in10, and subsequently utilized in11,21. SOAP repre-
sentations, and resulting similarity measures, however,
are computed on localized atom centered molecular frag-
ments at a fixed scale, which are then combined to form
global similarity measures between di↵erent molecules21.
First order scattering coe�cients S⇢x[j, `, q] are global in-
tegrated descriptions of the state x, which are computed
across each scale 2j .

III. SCALE INTERACTION COEFFICIENTS

First order scattering coe�cients separate the scales of
the system x. They encode both micro- and macroscopic
invariant geometric descriptions of x, corresponding to
short- and long-range interactions. However, the chemi-
cal and physical properties of complex quantum systems

⇢(⇢(x ?  ↵,�) ?  ↵0,�0)

supervised
learning

Linear
Regression f̃(x)

QM9: Data basis of 130.000 organic molecules with C,H,O,N, F
with DFT atomisation energies

Regression error ⇠ 0.5 kcal/mol ⇠ Deep Nets.

x

Invariants to
Translations
Rotations

Linear
Averaging

O(log2 d)

Sx

But small molecules with at most 29 atoms and 9 heavy ones



    Image Classification

Textures
0.5 %60 classes

Digits
Scattering Deep Nets.

0.5 %
10 classes

Errors:

⇢(⇢(x ?  ↵,�) ?  ↵0,�0) f̃(x)x

convolutional neural network without learning
supervised
learning

What is learned ?

Multiscale

Sx

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

AlexNet
60%

ImageNet

103 classes
20% : 2012

J. Bruna

Spatial
Averaging

?�J

Linear
Classifier

Linearize



 Sparse Dictionary Representation

Pattern representations with sparse dictionary expansions:

=

⇥
⇥

⇥

⇥
⇥

x̄ D z

Sparse l1 expansion of x̄ in D:

z = argmin
z̄

kx̄�Dz̄k22 + ↵ kz̄k1

• Need to learn ”sparse informative patterns”

• How to minimise this convex cost ?



     Homotopy ISTA Network

z
k ! 1

where T↵(a) = sign(a) max(|a|� ↵, 0) is a soft-thresholding.

zk+1 = T↵k(D
tx̄+ (I �DtD)zk)

+ ++

Dt

Id�DtD Id�DtD

x̄

+... zK

ISTA-Net(D)

• Implemented with a convolutional network of depth K:

↵k ⇠ ��k

↵1 ↵K

• Homotopy algorithms decrease the multiplier ↵k:

z = argmin
z̄

kx̄�Dz̄k22 + ↵k kzk1

with an iterated soft-threshold decreasing thresholds:

with a convolutional dictionary D



Dictionary Learning for Classification

+ ++

Dt

Id�DtD Id�DtD+...

ISTA-Net(D)

l1 sparse coding in D

x

classifier f̃(x)

• Deep network with sparse coding and classification:

Loss(D) =
X

i

loss(yi, f̃(xi))

• Optimize the dictionary D and the classifier to minimize

the classification loss over a supervised data basis {xi, yi}i:

• Stochastic gradient descent



    ImageNet  ClassificationY LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

ImageNet
103 classes

f̃(x)⇢(⇢(x ?  ↵,�) ?  ↵0,�0)x Sx
Classifier

f̃(x)⇢(⇢(x ?  ↵,�) ?  ↵0,�0)x
Sx z

Multiscale Scattering

Spatial
Averaging

Learned sparse coding

: patterns stored in D

Linearize

ClassifierISTA-Net
D

18% error

60% error

f̃(x)x
zISTA-Net

D
50% errorClassifier

Learned sparse coding

J. Zarka, L. Thiry, T. Angles

AlexNet: 20% errorInterpretable network

Spatial
Averaging

Why such an error reduction ? Linearize classes in separate spaces



   Non Ergodic Processes

L1

⇢
Lj

⇢x
Encoder

W1 W2 Wj

x̃

DecoderGaussian white

Network trained on bedroom images:

Under review as a conference paper at ICLR 2016

Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

6.3.2 VECTOR ARITHMETIC ON FACE SAMPLES

In the context of evaluating learned representations of words (Mikolov et al., 2013) demonstrated
that simple arithmetic operations revealed rich linear structure in representation space. One canoni-
cal example demonstrated that the vector(”King”) - vector(”Man”) + vector(”Woman”) resulted in a
vector whose nearest neighbor was the vector for Queen. We investigated whether similar structure
emerges in the Z representation of our generators. We performed similar arithmetic on the Z vectors
of sets of exemplar samples for visual concepts. Experiments working on only single samples per
concept were unstable, but averaging the Z vector for three examplars showed consistent and stable
generations that semantically obeyed the arithmetic. In addition to the object manipulation shown
in (Fig. 7), we demonstrate that face pose is also modeled linearly in Z space (Fig. 8).

These demonstrations suggest interesting applications can be developed using Z representations
learned by our models. It has been previously demonstrated that conditional generative models can
learn to convincingly model object attributes like scale, rotation, and position (Dosovitskiy et al.,
2014). This is to our knowledge the first demonstration of this occurring in purely unsupervised

8

w = ↵w1 + (1� ↵)w2

Under review as a conference paper at ICLR 2016

Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

6.3.2 VECTOR ARITHMETIC ON FACE SAMPLES

In the context of evaluating learned representations of words (Mikolov et al., 2013) demonstrated
that simple arithmetic operations revealed rich linear structure in representation space. One canoni-
cal example demonstrated that the vector(”King”) - vector(”Man”) + vector(”Woman”) resulted in a
vector whose nearest neighbor was the vector for Queen. We investigated whether similar structure
emerges in the Z representation of our generators. We performed similar arithmetic on the Z vectors
of sets of exemplar samples for visual concepts. Experiments working on only single samples per
concept were unstable, but averaging the Z vector for three examplars showed consistent and stable
generations that semantically obeyed the arithmetic. In addition to the object manipulation shown
in (Fig. 7), we demonstrate that face pose is also modeled linearly in Z space (Fig. 8).
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End-to-end dictionary learning: Learning the decoder amounts to learning the dictionaries216

{Dj}0j<J . By chaining all the homotopy dictionary learning networks that implement the sparse217

recovery functions GDj for 0  j  J defined in eqs. (3, 5) we obtain the network:218

G = GD0 �GD1 � · · · �GDJ .

This deep convolutional network can be trained to reconstruct X in an end-to-end manner by using219

the loss defined in eq. (1). Similar to a DCGAN architecture, the first layers are fully-connected220

while the next ones are convolutional; in contrast, all the weights of our network are dictionaries that221

sparsify IJ(X) and Vj(X), for 0  j < J .222

5 Experimental results223

In this section, we evaluate CASE empirically. We perform experiments on CelebA [17] as well as224

LSUN [18], both resized to 64 ⇥ 64. We used the package Kymatio [19] to implement the phase225

scattering transform. The details of the experiments and the code to reproduce them are in the226

supplementary material. Fig. 6 qualitatively shows that CASE provides accurate reconstructions on227

both train and test sets, random generations recovering patterns from the data, and interpolations228

through deformations in the latent space. Since our architecture is based on predefined filters, our229

results cannot be compared directly with state-of-the-art auto-encoders. A fully learned version of230

CASE could alleviate these differences. Table 1 shows quantitative comparisons with VAE and GLO231

for reconstructions, and with VAE and WAE-GAN for random samplings. Fig. 7 shows coarse-to-fine232

generations on CelebA 128⇥ 128, which use the organization by scales of our representation.233

Figure 6: For both datasets we show reconstructions of train and test images (first and second rows,
respectively), samplings from white Gaussian noise and linear interpolations in the latent space.

Similarly to other auto-encoders, the high-frequency details of the reconstructed images are missing234

(such as glasses or blanket patterns). In the case of the CASE model, the quality of the sparse recovery235

functions depends on the number of elements of the dictionaries. Indeed, if the dictionaries had a236

significant amount of elements (big memory capacity), they would provide sparse representations of237

all the patterns in the training set (including the high-frequencies). Test images would be reconstructed238

as long as their patterns can be expressed with the learned dictionaries. These initial results were done239

with a reduced GPU memory budget. We expect the results to improve with a sizeable GPU memory240

budget that allows increasing the memory capacity of an implementation of the CASE model.241
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       Conclusion

• Deep neural network are complex computational machines whose 
flexibility can be compared with Turing machines.  

• A Relu on multiscale filters can produce scale interactions: 
creates phase harmonics, it may also be used to compute sparse 
representations, or piecewlinear approximations.  

• One can define structured networks which are interpretable: 
similar to a structured program, with state of the art results.  

• Still need functional analysis models and approximation 
theorems with decay rates.


