Colloquium du CERMICS

Mathematical Mysteries of Deep Neural Networks

Stéphane Mallat (Collège de France et École Normale Supérieure)

20 septembre 2019

John Zarka, Sixin Zhang

Collège de France École Normale Supérieure

High-Dimensional Approximations

What regularity properties lead to low-dimensional approximations of f(x) for a high-dimensional $x \in \mathbb{R}^d$ in physics and machine learning ?

or

• f(x): class of an image x having $d = 10^6$ pixels

energy of a physical system in a state $x \in \mathbb{R}^d$

• f(x) = p(x) a probability density.

Curse of Dimensionality

• f(x) can be approximated from examples $\{x_i, f(x_i)\}_i$ by local interpolation if f is regular and there are close examples:

- Need $n \ge \epsilon^{-d}$ points to cover $[0, 1]^d$ at a Euclidean distance ϵ Problem: $||x - x_i||$ is always large
- To estimate f(x) when x is in a high-dimensional Ω requires strong regularity of f in Ω : what regularity ?

• Deep Convolutional Network • Deep convolutional neural network to predict y = f(x): $x \in \mathbb{R}^d$ $\rho(a) = \max(a, 0)$ $\rho(L_1)$ $\rho(L$

 L_j : spatial convolutions and linear combination of channels Exceptional results for classification of *images, sounds, language, regressions in physics, signal and image generation...* but not interpretable.

To create simpler interpretable networks:

What underlying regularity is captured and how ?

3 ingredients: Multiscale, Linearize group actions, Sparse

Scale Separation and Interactions

• Dimension reduction:

Interactions de d bodies represented by x(u): particles, pixels...

Interactions across scales

Multiscale regroupement of interactions of d bodies into interactions of $O(\log d)$ groups.

Scale separation \Rightarrow wavelet transforms.

How to capture scale interactions ?

Critical harmonic analysis problems since 1970's

Overview: Simpler Networks

- Scale separation with wavelets and interactions through phase
- Linear scale interaction models and invariants in:
 - Statistical physics for turbulence
 - Quantum chemistry and image classification
- Non-linear scale interactions models with sparse dictionaries in:
 - Classification of complex structures as in ImageNet
 - Generation of non-ergodic processes

Scale separation with Wavelets

• Wavelet filter $\psi(u)$: = +i =

rotated and dilated: $\psi_{\lambda}(u) = 2^{-2j} \psi(2^{-j}r_{\theta}u)$

• Wavelet transform: invertible

$$Wx = \left(x \star \psi_{\lambda}\right)_{\lambda}$$

• Zero-mean and no correlations across scales: problem!

$$\sum_{u} x \star \psi_{\lambda}(u) x \star \psi_{\lambda'}^{*}(u) = \sum_{\omega} |\widehat{x}(\omega)|^{2} \psi_{\lambda}(\omega) \psi_{\lambda}(\omega)^{*} \approx 0 \quad \text{if} \quad \lambda \neq \lambda'$$

Stat. Physics of Stationary Proc.

What stochastic models for turbulence ?

$$d = 6 \, 10^4$$

Prior: stationary $\Leftrightarrow p(x)$ is invariant to translations.

Maximum entropy distribution \tilde{p} conditioned by M moments

$$\mathbb{E}(\phi_m(x)) = \mu_m \quad \Rightarrow \quad \tilde{p}(x) = \mathcal{Z}^{-1} \exp\left(-\sum_{m=1}^M \beta_m \phi_m(x)\right)$$

With M = d second order moments:

 $\phi_m(x) = \sum_u x(u)x(u-m) \implies \tilde{p}(x)$ is a Gaussian distribution

Gaussian Models of Stationary Proc.

What stochastic models for turbulence ?

$$x = 6 \, 10^4$$

 $\tilde{p}(x)$ is a Gaussian distribution \tilde{x}

No correlation is captured across scales and frequencies. Random phases.

How to capture non-Gaussianity and long range interactions? Failure of high order moments. Deep net generations look better. Rectifiers act on Phase

Real wavelets of phase α: ψ_{α,λ} = Real(e^{-iα} ψ_λ) Rectifier: ρ(a) = max(a, 0) Ux(u, α, λ) = ρ(x * Real(e^{iα} ψ_λ)) = ρ(Real(e^{iα} x * ψ_λ)) x * ψ_λ = |x * ψ_λ| e^{iφ(x*ψ_λ)} Homogeneous: ρ(αa) = α ρ(a) if α > 0

$$Ux(u,\alpha,\lambda) = |x \star \psi_{\lambda}| \rho(\cos(\alpha + \varphi(x \star \psi_{\lambda})))$$

A Relu computes phase harmonics:

ENS

Theorem: Fourier transform along the phase α : $\widehat{U}x(u,k,\lambda) = \widehat{\gamma}(k) |x \star \psi_{\lambda}(u)| e^{ik \varphi(x \star \psi_{\lambda}(u))}$ with $\gamma(\alpha) = \rho(\cos \alpha)$ for any homogeneous non-linearity ρ .

Frequency Transpositions

Phase harmonics: $|x \star \psi_{\lambda}(u)| e^{i k \varphi(x \star \psi_{\lambda}(u))}$

Performs a non-linear frequency dilation / transposition

Phase Harmonics

Correlated if $k\lambda \approx \lambda'$

Real wavelets: $\psi_{\alpha,\lambda} = \operatorname{Real}(e^{-i\alpha}\psi_{\lambda})$ and $\rho(a) = \max(a,0)$

Sixin Zhang

Maximum entropy distribution conditioned by $M = O(\log^2 d) \text{ wavelet harmonic correlations } \mathbb{E}(\phi_m(x))$ $\phi_m(x) = \sum_u |x \star \psi_\lambda(u)| \, e^{ik\varphi(x \star \psi_\lambda(u))} \, |x \star \psi_{\lambda'}(u)| \, e^{-ik'\varphi(x \star \psi_{\lambda'}(u))}$ $\tilde{p}(x) = \mathcal{Z}^{-1} \, \exp\left(-\sum_{m=1}^M \beta_m \, \phi_m(x)\right)$

 ${\mathcal X}$

Ergodic Stationary Processes

S. Zhang, J. Bruna, E. Allys, F. Levrier, F. Boulanger $d = 6 \, 10^4$

 $M = 3 \, 10^3$ number of moments

Phase coherence is restored How much physics are these models capturing? What about non-ergodic processes?

 \tilde{x}

Scattering Wavelet Coefficients

Classification: invariance by translation by spatial averaging

$$\left(\begin{array}{c} x \star \phi_{2^{J}}(2^{J}n) \\ \rho(x \star \psi_{\alpha,\lambda}) \star \phi_{J}(2^{J}n) \end{array}\right)_{\alpha,\lambda}$$

Recover the information loss with a second layer:

$$S_J x = U x \star \phi_J = \left(\begin{array}{c} x \star \phi_{2J}(2^J n) \\ \rho(x \star \psi_{\alpha,\lambda}) \star \phi_J(2^J n) \\ \rho(\rho(x \star \psi_{\alpha,\lambda}) \star \psi_{j',\alpha'}) \star \phi_J(2^J n) \end{array}\right)_{\alpha,\lambda,\alpha',\lambda'}$$

- Linearize small deformations

Theorem if $D_{\tau}x(u) = x(u - \tau(u))$ then $\lim_{J \to \infty} \|S_J D_{\tau}x - S_J x\| \le C \|\nabla \tau\|_{\infty} \|x\|$ Quantum Chemistry: N-Body Problem

• Can we learn the interaction energy f(x) of a system with $x = \{ \text{positions, charges} \}$?

Symmetries:

f(x) is invariant to translations and rotations,

multiscale interactions: chemical bounds, Van der Waal forces...

The energy depends upon the electronic density (Kohn-Sham)

Ground state electronic density computed with Schroedinger

- We do not know the electronic density at equilibrium.
- The molecular state $\{z_k, r_k\}_{k \leq d}$ is represented by Diracs located at r_k weighted by charges z_k :

$$x(u) = \sum_{k=1}^{d} z_k \,\delta(u - r_k)$$

Electronic density

Dirac density x(u)

Harmonic Wavelet Interferences -

$$x = \sum_{k} z_k \delta(u - r_k) \Rightarrow \rho\left(x \star \psi_{2^j,\ell}(u)\right) = \rho\left(\sum_{k} z_k \psi_{2^j,\ell}(u - r_k)\right)$$

$$\ell = 0 \qquad \ell = 1 \qquad \ell = 2 \qquad \ell = 3$$

ENS

$$j = 5$$

QM9: Data basis of 130.000 organic molecules with C, H, O, N, Fwith DFT atomisation energies

Regression error ~ 0.5 kcal/mol \sim Deep Nets.

But small molecules with at most 29 atoms and 9 heavy ones

Sparse Dictionary Representation

• Need to learn "sparse informative patterns"

Pattern representations with sparse dictionary expansions:

• How to minimise this convex cost ?

• Homotopy algorithms decrease the multiplier α_k :

$$z = \arg\min_{\bar{z}} \|\bar{x} - D\bar{z}\|_{2}^{2} + \alpha_{k} \|z\|_{1}$$

with an iterated soft-threshold decreasing thresholds:

$$z_{k+1} = T_{\alpha_k} (D^t \bar{x} + (I - D^t D) z_k) \xrightarrow[k \to \infty]{\alpha_k \sim \gamma^{-k}} z_k$$

where $T_{\alpha}(a) = \operatorname{sign}(a) \max(|a| - \alpha, 0)$ is a soft-thresholding.

 \bullet Implemented with a convolutional network of depth K:

Dictionary Learning for Classification

• Deep network with sparse coding and classification:

• Optimize the dictionary D and the classifier to minimize the classification loss over a supervised data basis $\{x_i, y_i\}_i$:

$$Loss(D) = \sum_{i} loss(y_i, \tilde{f}(x_i))$$

• Stochastic gradient descent

Non Ergodic Processes autoencoder: trained on n examples $\{x_i\}_{i \le n}$ Encoder Gaussian white x μ μ

Network trained on bedroom images: $w = \alpha w_1 + (1 - \alpha)w_2$

 w_1

Network trained on faces of celebrities:

 W_2

Generation as an Inverse Problem

Tomas Angles

Inversion:

U has a linear inverse U^{-1} : $\rho(a) + \rho(-a) = a$ L is non-invertible linear projector

Regularization: inversion in a dictionary D where Ux is sparse Compute z such that Ux = Dz where z is sparse Non-linear multiscale model

Generation as an Inverse Problem

Inversion:

Tomas Angles

U has a linear inverse U^{-1} , L is non-invertible linear projector

Inversion in a dictionary D where Ux is sparse:

$$Ux = Dz \Rightarrow w = LUx = LDz$$

• How to optimise the dictionary D ?

Learn the dictionary D by minimizing $\sum_{i} ||x_{i} - \tilde{x}_{i}||^{2}$ with a stochastic gradient descent on a training set $\{x_{i}\}_{i}$

Training Reconstruction

Celebrities Data Basis

ENS

Tomas Angles

 x_i

 \tilde{x}_i

Image: Second second

Tomas Angles

Syntheses with different input noises

Random Generations from Noise

Tomás Angles

Celebrities

ENS

Bedrooms

- Deep neural network are complex computational machines whose flexibility can be compared with Turing machines.
- A Relu on multiscale filters can produce scale interactions: creates phase harmonics, it may also be used to compute sparse representations, or piecewlinear approximations.
- One can define structured networks which are interpretable: similar to a structured program, with state of the art results.
- Still need functional analysis models and approximation theorems with decay rates.