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Motivation: Sensor array imaging

Sensor array imaging (echography in medical imaging, sonar,
non-destructive testing, seismic exploration, etc) has two steps:
- data acquisition: an unknown medium is probed with waves;
waves are emitted by a source (or a source array) and recorded by a
receiver (or a receiver array).
- data processing: the recorded signals are processed to identify the
quantities of interest (reflector locations, etc).

Example:
Ultrasound echography −→

Mathematically: Ill-posed inverse problems.
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Example: Ultrasound in concrete
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Experience: nondestructive testing Data: recorded signals
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Example: Reflection seismology
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Velocity estimation problem
Direct problem: Given the velocity map c = (c(x))x∈Ω compute the
wavefield solution of the wave equation

[∂2
t − c2(x)∆]p(s)(t, x) = f (t)δ(x − xs), t ∈ R, x ∈ Ω ⊂ Rd ,

starting from p(s)(t, x) = 0, t � 0, + boundary conditions at ∂Ω.
At the locations of the receivers:

dr ,s(t) = p(s)(t, xr ), r , s = 1, ..,N

↪→ forward map
D : c 7→ d

where d = ((dr ,s(t))N
r ,s=1)t∈[tmin,tmax], is the array response matrix.

Inverse problem:

determine the velocity map c.
Given the time-resolved measurements d,
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Full Waveform Inversion (FWI)
FWI fits data with the model prediction (least-square minimization):

ĉ = argmin
c

OFWI [c],

OFWI [c] = ‖D[c]− dmeas‖2 =
N∑

r ,s=1

∫ tmax

tmin
|D[c](t)r ,s − dmeas(t)r ,s |2dt

Cf [Virieux and Operto 2009].
Problem: The objective function OFWI [c] is not convex in c.
↪→ optimization needs hard to get good initial guess.

Regularization: ĉ = argminc
{
OFWI [c] + λReg[c]

}
, with

Reg[c] = ‖c‖2
L2 , ‖c‖L1 , ‖c‖TV, ... (Bayesian interpretation).

Layer stripping: Proceed hierarchically from the shallow part to the
deep part [Wang et al. 2009]
Frequency hopping: Successive inversion of subdata sets of increasing
high-frequency content [Bunks et al. 1995]
Optimal transport: Wasserstein distance instead of least-squares
[Engquist et al., 2014, Métivier et al. 2016]
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Topography of the FWI objective function
Velocity (m/s) Log of FWI misfit

Search velocity has two parameters: the bottom velocity and depth of
the interface (the angle and top velocity are known).
Probing pulse is a modulated Gaussian pulse with central frequency 6Hz and
bandwidth 4Hz (λ ' 300m at 10Hz).
N = 30 sensors; Nt = 39 time samples at interval τ = 0.0435s.
Objective function:

OFWI [c] = ‖D[c]− dmeas‖2

↪→ Many local minima.
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Objective

Objective: Find a convex formulation of FWI.
Proposed approach: find a (nonlinear) mapping R(d) such that:

O[c] = ‖R(D[c])−R(dmeas)‖2

has better convexity properties than

OFWI [c] = ‖D[c]− dmeas‖2

Remark : We can think of the mapping R as a nonlinear
preconditioner of the forward mapping D.
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Towards the ROM objective function

• Ideal objective function 1:

O[c] = ‖c − cmeas‖2 =
∫

Ω
|c(x)− cmeas(x)|2dx

but cmeas is not observed (i.e., cannot be extracted from dmeas) !
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Towards the ROM objective function
• Let us consider the wave operator

A[c] = −c(x)∆
[
c(x) ·

]
• Galerkin method to approximate the operator A by a matrix:
- consider a space of (piecewise polynomial) functions with basis
(Ψl (x))L

l=1,
- consider the row vector field Ψ(x) = (Ψ1(x), . . . ,ΨL(x)) and define:

AΨ =
∫

Ω
dx Ψ(x)TAΨ(x) ∈ RL×L

• Ideal objective function 2:

O[c] = ‖AΨ[c]− AΨ
meas‖2 =

L∑
l ,l ′=1

|AΨ[c]ll ′ − AΨ
meas,ll ′ |2

but AΨ
meas is not observed !
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The ROM matrix
• Our Galerkin approximation space:
- consider a time discretization {tj = jτ}0≤j<Nt with uniform stepping τ ,
- gather the waves p(s)(t, x) evaluated at t = tj for all the N sources:

pj(x) =
(

p(1)(tj , x), . . . , p(N)(tj , x)
)
, x ∈ Ω.

(note: apply first a linear preprocessing).
- organize the first Nt snapshots in the NNt dimensional row vector field:

U(x) = (p0(x), . . . ,pNt−1(x)) , x ∈ Ω.

- apply Gram-Schmidt orthogonalization onto U(x) = V (x)R.
• Define ROM matrix:

Arom =
∫

Ω
dx V (x)TAV (x) ∈ RNNt×NNt .

• Ideal objective function 3:

O[c] = ‖Arom[c]− Arom
meas‖2

but Arom
meas is not observed (neither A nor V (x) is observed) !
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The ROM matrix
• Our Galerkin approximation space:
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• Define ROM matrix:

Arom =
∫

Ω
dx V (x)TAV (x) ∈ RNNt×NNt .

• Proposition: The ROM matrix Arom can be extracted from the
measurements d, without knowing A nor V (x).
↪→ OROM [c] = ‖Arom[c]− Arom

meas‖2 is a legitimate objective function.
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Proof of the proposition
First step: Linear preprocessing.
• Define the new data matrix df (t):

df (t) = [−f ′(−·) ∗t d](t) + [−f ′(−·) ∗t d](−t).

Second step: Expression of the new data entries as wave correlations.
• Introduce the solution u(s)(t, x) of the homogeneous wave equation

(∂2
t +A)u(s)(t, x) = 0, t > 0, x ∈ Ω,

with boundary conditions on ∂Ω, with initial state

u(s)(0, x) = u(s)
0 (x) =

∣∣∣f̂ (√A )∣∣∣ δ(x − xs), ∂tu(s)(0, x) = 0.

It has the form
u(s)(t, x) = cos

(
t
√
A
)
u(s)

0 (x).
→ The entries of df (t) can be expressed as wave correlations:

d f
r ,s(t) =

∫
Ω

dx u(r)
0 (x)u(s)(t, x).
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Proof of the proposition

Third step: Definition of the ROM.
Let τ > 0 be fixed.
• Gather the Nt snapshots for all the N sources in the row vector fields

uj(x) =
(

u(1)(jτ, x), . . . , u(N)(jτ, x)
)
, 0 ≤ j < Nt.

• Organize the first Nt snapshots in the NNt dimensional row vector field:

U(x) = (u0(x), . . . ,uNt−1(x)) , x ∈ Ω.

• Apply Gram-Schmidt orthogonalization onto U(x) = V (x)R.
(note: we have

∫
Ω dx V (x)TV (x) = INNt).

• Define
Arom =

∫
Ω

dx V (x)TAV (x)
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Proof of the proposition
Fourth step: Expression of the ROM in terms of mass and stiffness.
• Define the NNt × NNt “mass” and “stiffness” matrices:

M =
∫

Ω
dx UT (x)U(x), S =

∫
Ω

dx UT (x)AU(x)

• Since U(x) = V (x)R, we get

M = RT
∫

Ω
dx V T (x)V (x)R

= RT R

and

Arom =
∫

Ω
dx V (x)TAV (x) = R−T

∫
Ω

dx U(x)TAU(x)R

= R−T SR

↪→ Arom can be expressed in terms of M and S.
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Proof of the proposition

Fifth step: Expression of the ROM in terms of data.
The N × N blocks of the mass matrix M are

Mi ,j = 〈ui ,uj〉L2(Ω) = 〈cos
(
iτ
√
A
)
u0, cos

(
jτ
√
A
)
u0〉L2(Ω)

= 〈u0, cos
(
iτ
√
A
)

cos
(
jτ
√
A
)
u0〉L2(Ω)

= 1
2〈u0,

[
cos

(
(i + j)τ

√
A
)

+ cos
(
|i − j |τ

√
A
)]
u0〉L2(Ω)

= 1
2〈u0,ui+j + u|i−j|〉L2(Ω)

= 1
2
(
df ((i + j)τ) + df (|i − j |τ)

)
, 0 ≤ i , j < Nt.

Idem for the stiffness matrix S.
↪→ M and S can be expressed in terms of the data matrix df .
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Algorithm for data-driven ROM matrix
Input: The matrices d(t) = (dr ,s(t))N

r ,s=1 of measurements.
1. Compute d f

r ,s(t) = [−f ′(−·) ∗t dr ,s ](t) + [−f ′(−·) ∗t dr ,s ](−t) and

Dj = df (jτ), 0 ≤ j ≤ 2Nt − 2.

2. Compute D̈j = d̈f (jτ), for j = 0, . . . , 2Nt − 2 with d̈ f
r ,s(t) = ∂2

t d f
r ,s(t)

using, e.g., the Fourier transform.
3. Calculate M,S ∈ RNNt×NNt with the block entries

Mi ,j = 1
2
(
Di+j + D|i−j|

)
∈ RN×N ,

Si ,j = −1
2
(
D̈i+j + D̈|i−j|

)
∈ RN×N ,

for 0 ≤ i , j ≤ Nt − 1.
4. Perform block Cholesky factorization M = RT R.
Output: Arom = R−T SR−1.
Josselin Garnier (Ecole polytechnique) ROM-based imaging April 10, 2025 16 / 27



ROM objective function

ROM misfit function:

OROM [c] = ‖Arom[c]− Arom
meas‖2

where Arom[c] is computed from D[c] and Arom
meas is computed from

dmeas .
For a rich enough space of snapshots, the ROM matrix Arom contains
roughly the same information as A = −c(x)∆

[
c(x) ·

]
.

↪→ The ROM misfit function should have nice convexity properties.
Conjecture: “rich enough” would mean for sensors all around the
domain of interest, separated by roughly half a wavelength, for time
sampling satisfying the Nyquist criterium.
↪→ Conjecture proved only in special situations.
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Topographies of the FWI and ROM objective functions
Velocity (m/s) Log of FWI misfit Log of ROM misfit

Search velocity has two parameters: the contrast and the depth of the
interface (the angle and top velocity are known).
FWI objective function:

OFWI [c] = ‖D[c]− dmeas‖2

ROM objective function:

OROM [c] = ‖Arom[c]− Arom
meas‖2
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Camembert model
True medium FWI estimate ROM estimate

Probing pulse is a modulated Gaussian pulse with central frequency 6Hz and
bandwidth 4Hz (λ = 300m at 10Hz).
Search velocity: c(x ,η) = co +

∑
l ηlφl (x), η = (ηl )L

l=1.
φl (x) are Gaussian peaks with centers on a regular grid, L = 400, with width
60m (0.2λ).
FWI minimizes OFWI(η) = ‖D[c(η)]− dmeas‖2 + µ‖η‖2

ROM minimizes OROM(η) = ‖Arom[c(η)]− Arom
meas‖2 + µ‖η‖2
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Salt body (BP - model)
True model Initial guess

FWI estimate ROM estimate

Josselin Garnier (Ecole polytechnique) ROM-based imaging April 10, 2025 20 / 27



One limitation and two extensions

One limitation of the method:
We need co-located sources and receivers.
Extension to passive imaging:
Consider a receiver array at (xr )N

r=1 recording signals transmitted by
noise sources (uncontrolled, opportunistic sources).
Compute the cross correlation matrix of the recorded signals.
→ The ROM procedure is natural in the passive framework, since the
cross correlation matrix gives directly the data matrix
df (t) = (d f

r ,r ′(t))N
r ,r ′=1.

Extension to vector waves.
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Passive imaging

Active acquisition Passive acquisition

Consider the solution p(t, x) of the wave equation

∂2
t p − c2(x)∆p = s(t, x), t ∈ R, x ∈ Ω ⊂ Rd ,

where s(t, x) is a zero-mean, stationary in time random process with

〈s(t1, y1)s(t2, y2)〉 = F (t1 − t2)K (y1)δ(y1 − y2)

The passive data set is ((p(t, xr ))N
r=1)t∈[0,T ], with T � 1.

The empirical cross correlation of the recorded waves at xr and xr ′ is

CT (τ, xr , xr ′) = 1
T

∫ T

0
dt p(t, xr )p(t + τ, xr ′)
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Passive imaging
The statistical cross correlation

C (1)(τ, xr , xr ′) =
〈
CT (τ, xr , xr ′)

〉
is independent of T by stationarity of the noise sources.
The statistical stability follows from the ergodicity of the noise
sources:

CT (τ, xr , xr ′) T→+∞−→ C (1)(τ, xr , xr ′),
in probability [Garnier et al. 2016].

• Proposition. We have, for any r , r ′ = 1, . . . ,N,

∂2
τC (1)(τ, xr , xr ′) = −1

4d f
r ,r ′(τ),

where df (t) is the active data matrix obtained with a source signal f (t)
that satisfies |f̂ (ω)| = F̂ (ω)1/2 (F̂ = power spectral density of the noise
sources).
• Corollary. The passive data (cross correlation matrix) can be used in
the ROM algorithm (no preprocessing).
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An extension to first-order systems

General framework: The vectorial wave field ψε ∈ Rm satisfies

∂tψε(t,x) + Lψε(t,x) = s(t)fε(x), t ∈ R, x ∈ Ω ⊂ Rd ,

where L is skew-adjoint, fε(x) models a source localized at point
xε1 , with polarization indexed by ε2 (ε = (ε1, ε2) ∈ N2).
Can model acoustics, elasticity, and electromagnetism.
The array response matrix is:

dε′,ε(t) =
∫

Ω
dx [fε′(x)]T ψε(t,x).

Main hypothesis: Requires multi-dimensional, collocated sources and
receivers.
Main goal: Multiparametric inversion.
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First-order acoustic system
The acoustic wave equation:

∂tuε(t,x) + ρ−1(x)∇pε(t,x) = s(t)Fε(x),
∂tpε(t,x) + K (x)∇ · uε(t,x) = 0,

can be formulated in the general first-order form with (c =
√

K/ρ):

ψε(t,x) =
(√

ρ(x)uε(t,x)
1√

K(x)
pε(t,x)

)
, fε(x) =

(
Fε(x)

0

)
,

L =

 0 1√
ρ(x)

grad
[
c(x)

√
ρ(x)·

]
c(x)

√
ρ(x)div

[
1√
ρ(x)
·
]

0

 .
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c (km/s) ρ (g/cm3)

True

ROM

FWI
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Conclusions
The ROM is an approximation of the wave operator on a space
defined by the snapshots of the wavefield.
This space is not known and neither is the wave operator.
Yet, we can compute the ROM from the data !
We can then formulate a velocity estimation algorithm that minimizes
the ROM misfit and that avoids cycle skipping and other problems.
The method can be applied to active and passive imaging.
To be continued (for vector waves).
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