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Local renewable energies are spreading

To lower CO2 emissions from our electricity generation

We tend to consume energy where it is produced
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But they require a storage that has to be managed

When intermittent renewables generation does not match demand

we rely on fossil fuels

Storage cleans our electricity generation

as long as we optimize its management to make it sustainable
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Real problems adressed by the optimization team at Efficacity

Our team solves energy management problems

for the energy transition of cities with our industrial partners

RATP case study VINCI Energies case study
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We develop mathematical methods
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handling uncertain outcomes
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to optimize storage management on multiple time scales

to store/consume clean energy at the right minutes of the day

and to ensure a sustainable battery life lasting many years

7/59



Table of contents of the thesis: 5 preprints, 2 articles

Part I: Contributions to time decomposition in multistage stochastic optimization

1. Time blocks decomposition of multistage stochastic optimization problems,

P. Carpentier, J-Ph. Chancelier, M. De Lara, T. Rigaut

2. A template to design online policies for multistage stochastic optimization

problems, P. Carpentier, J-Ph. Chancelier, M. De Lara, F. Pacaud, T. Rigaut

Part II: Stochastic optimization of storage energy management in microgrids

3. Energy and air quality management in a subway station using stochastic
dynamic optimization, IEEE Transactions on Power Systems,

P. Carpentier, J-Ph. Chancelier, M. De Lara, T. Rigaut, J. Waeytens

4. Power management in a DC micro grid integrating renewables and storage,

Control Engineering Practices, G. Damm, E. De Santis, M.D. Di Benedetto, A. Iovine, T. Rigaut

5. Algorithms for two-time scales stochastic optimization with applications to

long term management of energy storage,

P. Carpentier, J-Ph. Chancelier, M. De Lara, T. Rigaut

Part III: Softwares and experimentations

6. DynOpt: a generic library for stochastic dynamic optimization, T. Rigaut

7. Energy aware temperature control of a house using stochastic dual dynamic

programming: a first test bed implementation, F. Bourquin, T. Rigaut, J. Waeytens
8/59



Outline of the PhD defense

A: Stochastic optimization of energy and air quality in a subway station 10’

We optimize battery and ventilation control

to minimize daily electricity bill of a subway station

• Chapters 2 and 3

B: Algorithms for two-time scales stochastic optimization 25’

We optimize on two time scales

to minimize electricity bill of a solar home

and maximize long term sustainability of batteries

• Chapters 1 and 5

C: Software and experimentations 5’

We deploy our algorithms in the real world

• Chapters 6 and 7 9/59



A: Stochastic optimization of energy

and air quality in a subway station



We design energy management strategies for a subway station
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Subway stations have unexploited energy ressources
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Subway stations have unexploited erratic energy ressources

Braking energy scenarios
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That can be recovered through storage
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Subways mechanical braking generates particulate matters

Ventilation represents 25% of electricity consumption

Win Win: recovering braking energy improves air quality

So let us optimize battery and ventilation in a subway station!
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A: Stochastic optimization of energy

and air quality in a subway station

Statement of the problem



A subway station with battery and ventilation

S
UbD

B

U r

Uv
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Physical model and optimization objective

• Battery state of charge dynamics

St+1 = St + ρc (Ub
t )+︸ ︷︷ ︸

charge

− ρ−1
d (Ub

t )−︸ ︷︷ ︸
discharge

• PM10 concentration dynamics

C t+1 = C t −∆δC t + ∆αN2
t+1︸ ︷︷ ︸

deposition and generation

+
(ρv

v
Uv

t + ∆βNt+1

)(
Co

t+1 − C t

)
︸ ︷︷ ︸

inside/outside exchange

• Balance equation

U r
t + Bt︸ ︷︷ ︸

import+braking

= Dt + Uv
t + Ub

t︸ ︷︷ ︸
demand+ventilation+battery

• Cost: energy consumption and PM10 concentration

E
[ T−1∑

t=0

pt+1

(
U r

t+1

)+︸ ︷︷ ︸
energy expense

+ λC t+1︸ ︷︷ ︸
air quality cost

]
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We focus on braking energy uncertainty

We design algorithms to handle this uncertainty based on multiple

scenarios of

(W 0, . . . ,W T ) with W t = Bt

Braking energy scenarios (RATP)
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Stochastic optimization problem statement

We gather all previous equations

• States: X t = (S t ,C t)

• Controls: U t = (Ub
t ,Uv

t )

• Uncertainty: W t = Bt

• Costs: Lt(X t ,U t ,W t+1)

• Dynamic: ft(X t ,U t ,W t+1)

• Constraints: Γt

to state a standard stochastic

optimal control problem

min
X ,U

E
[ T−1∑

t=0

Lt(X t ,U t ,W t+1)
]

s.t X t+1 = ft(X t ,U t ,W t+1)

(X t ,U t ,W t+1) ∈ Γt , P-a.s

σ(U t) ⊂ σ(W 0, . . . ,W t)

The non anticipativity constraint states that we take our decisions

based on past uncertainties observations
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A: Stochastic optimization of energy

and air quality in a subway station

Comparison of 4 control strategies



We are looking for energy management strategies

We compare 4 methods to produce a strategy πt taking into account

current state xt ∈ Xt and last noise wt ∈Wt

and producing a control ut ∈ Ut

πt : Xt ×Wt → Ut ,

ut = πt(xt ,wt)

1. Open Loop Feedback Control (OLFC)

2. Certainty Equivalent Control (CEC)

3. Stochastic Dynamic Programming with online law (SDPO)

4. Stochastic Dynamic Programming with augmented state (SDPA)

These methods are detailed in Chapter 2:

A template to design online policies for multistage stochastic

optimization problems
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OLFC solves a deterministic problem online

Online at time t in state xt and knowing last noise wt we draw

S scenarios {w̃ s
t+1, . . . , w̃

s
T}1≤s≤S with probabilities {ps}1≤s≤S and solve

πt(xt ,wt) ∈ arg min
ut∈Ut

min
(ut+1,...,uT−1)

S∑
s=1

ps

T−1∑
t=t′

Lt(x
s
t′ , ut′ , w̃

s
t′+1)

s.t x st′+1 = ft′(x
s
t′ , ut′ , w̃

s
t′+1)

x st = xt

• OLFC is a kind of stochastic Model Predictive Control (MPC)

• CEC (traditionally called MPC) is OLFC with one scenario
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SDPO computes value functions offline to use them online

• Offline we use a family of offline discrete laws {µof
1 , . . . , µ

of
T }

and compute value functions solving Bellman equation

VT = 0

Vt(xt) = min
ut∈Ut

∫
Wt+1

[
Lt(xt , ut ,wt+1)+Vt+1(xt+1)

]
µof
t+1(dwt+1)

s.t xt+1 = ft(xt , ut ,wt+1)

• Online at time t in state xt and knowing last noise wt ,

we use an online discrete conditional law µon
t+1(wt , ·) and solve

πt(xt ,wt) ∈ arg min
ut∈Ut

∫
Wt+1

[
Lt(xt , ut ,wt+1) + Vt+1(xt+1)

]
µon
t+1(wt , dwt+1)

s.t xt+1 = ft(xt , ut ,wt+1)
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SDPA computes state augmented value functions

• Offline noises are modeled as log W t+1 = a log W t + Z t+1

and we use discrete laws {ρ1, . . . , ρT} for (Z 1, . . . ,ZT )

Then we compute value functions for each x and w

Vt(x ,w) = min
u∈Ut

∫
Zt+1

[
Lt(x , u,wt+1) + Vt+1

(
xt+1,wt+1

)]
ρt+1(dzt+1)

s.t xt+1 = ft(x , u,wt+1)

wt+1 = exp(a logw + zt+1)

• Online at time t in state xt and knowing last noise wt , we solve

πt(xt ,wt) ∈ arg min
u∈Ut

∫
Zt+1

[
Lt(xt , u,wt+1) + Vt+1

(
xt+1,wt+1

)]
ρt+1(dzt+1)

s.t xt+1 = ft(xt , u,wt+1)

wt+1 = exp(a logwt + zt+1)
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A: Stochastic optimization of energy

and air quality in a subway station

Assessment by simulation: numerical results



Assessment of the strategies

We perform Monte Carlo simulations on common assessment scenarios

Optimization scenarios were used to design our algorithms

We compare how the strategies perform in terms of

1. Computation times

2. Energy expenses

3. Air quality
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SDP computes online decisions faster than OLFC and CEC

We obtain the following computation times

OLFC CEC SDPO SDPA

Offline time 0h06 3h47

Mean online time 54 ms 5.7 ms 0.04 ms 0.30 ms

SDP methods require offline time but are faster online
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We decrease expenses by 46 %: SDPA beats other strategies

• Without battery and constant ventilation at 60m3/s

Energy expenses: 161e

• SDPA is the best on average

OLFC CEC SDPO SDPA

Saved money (e) −72.4 ±0.29 −71.4 ±0.27 −73.0 ±0.28 −74.1 ±0.30

• SDPA is the best in almost every scenario
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We lower ventilation by 30 % without deteriorating air quality

• Without battery and constant ventilation at 60m3/s

Mean PM10: 108 µg/m3

• The algorithms do not deteriorate air quality

OLFC CEC SDPO SDPA

Mean PM10 (µg/m3) 106 ±0.01 107 ±0.01 107 ±0.01 106 ±0.01

• We do not deteriorate air quality

• SDPA and OLFC performances are equivalent for air quality
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We have compared

stochastic optimization algorithms

1. We have shown that

SDP outperforms MPC

to handle highly uncertain energy sources

2. We have shown that

we can decrease energy expenses by 46%

3. We have shown that

we can lower ventilation by 30%

without deteriorating air quality
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The algorithms solicitate the battery differently

State of charge of the battery on multiple simulations (gray),

mean (blue), 5% confidence interval (red) 27/59



Does it pay to install a battery

in a subway station?

We have to take into account investments

and battery aging!
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B: Algorithms for two-time scales

stochastic optimization



We tackle battery control problems on two time scales
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We will decompose the scales
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Two time scales stochastic optimal control problem

min
X

0:D+1
, U

0:D

E
[ D∑
d=0

Ld(X d ,Ud ,W d) + K (XD+1)
]

s.t X d+1 = fd(X d ,Ud ,W d)

Ud = (Ud ,0, . . . ,Ud ,m, . . . ,Ud ,M)

W d = (W d ,0, . . . ,W d ,m, . . . ,W d ,M)

σ(Ud ,m) ⊂ σ
(
W d ′,m′ ; (d ′,m′) ≤ (d ,m)

)
We have a non standard problem

• with daily time steps

• but a non anticipativity constraint every minute

30/59



Next to come: outline of part B

I. Illustration with an energy storage management application

II. Two algorithms for two-time scales stochastic optimization

III. Numerical results for a house with solar panels and batteries
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B: Algorithms for two-time scales

stochastic optimization

Application to energy storage management



Physical model: a home with load, solar panels and storage

• Two time scales uncertainties

• EL
d,m: Uncertain demand

• ES
d,m: Uncertain solar electricity

• Pb
d : Uncertain storage cost

• Two time scales controls

• EE
d,m: National grid import

• EB
d,m: Storage charge/discharge

• Rd : Storage renewal

• Two time scales states

• Bd,m: Storage state of charge

• Hd,m: Storage health

• Cd : Storage capacity

• Balance equation:

EE
d,m + ES

d,m = EB
d,m + EL

d,m

• Battery dynamic:

Bd,m+1 = Bd,m −
1
ρd

EB−
d,m + 1

ρd
ρcEB+

d,m

32/59



New dynamics: aging and renewal model

• At the end of every day d , we can buy a new battery at cost Pb
d × Rd

Storage capacity: C d+1 =

Rd , if Rd > 0

C d , otherwise

example: a Tesla Powerwall 2 with 14 kWh costs 430× 14 = 6020 e

• A new battery can make a maximum number of cycles Nc(Rd):

Storage health: Hd+1,0 =

2 × Nc(Rd) × Rd , if Rd > 0

Hd,M , otherwise

Hd,m is the amount of exchangeable energy day d , minute m

Hd,m+1 = Hd,m − 1

ρd
EB−

d,m − ρcEB+
d,m

example: a Tesla Powerwall 2 can make 3200 cycles or exchange 90 MWh

• A new battery is empty

Storage state of charge: Bd+1,0 =

B × Rd , if Rd > 0

Bd,M , otherwise
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We build a non standard stochastic optimal control problem

• Objective to be minimized

E
[ D∑

d=0

(
Pb

d × Rd︸ ︷︷ ︸
renewal

+
M−1∑
m=0

pe
d,m︸︷︷︸
price

×
(
EB

d,m + E L
d,m+1 − ES

d,m+1︸ ︷︷ ︸
national grid energy consumption

))]
• Controls

Ud = (EB
d,0 . . . ,E

B
d,m, . . . ,E

B
d,M−1,Rd)

• Uncertainties

W d =

(ES
d,1

E L
d,1

)
, . . . ,

(
ES

d,m

E L
d,m

)
, . . . ,

(
ES

d,M−1

E L
d,M−1

)
,

ES
d,M

E L
d,M

Pb
d




• States and dynamics

X d =

 C d

Bd,0

Hd,0

 and X d+1 = fd
(
X d ,Ud ,W d

)
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Two time scales stochastic optimal control problem

P : min
X

0:D+1
, U

0:D

E
[ D∑
d=0

Ld(X d ,Ud ,W d) + K (XD+1)
]
,

s.t X d+1 = fd(X d ,Ud ,W d) ,

Ud = (Ud ,0, . . . ,Ud ,m, . . . ,Ud ,M)

W d = (W d ,0, . . . ,W d ,m, . . . ,W d ,M)

σ(Ud ,m) ⊂ σ
(
W d ′,m′ ; (d ′,m′) ≤ (d ,m)

)
Two time scales because of the non anticipativity constraint

Information grows every minute!

• Intraday time stages: M = 24 ∗ 60 = 1440 minutes

• Daily time stages: D = 365 ∗ 20 = 7300 days

• D ×M = 10, 512, 000 stages!
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B: Algorithms for two-time scales

stochastic optimization

Time decomposition by daily dynamic

programming



Daily management when “end of the day” cost is known

On day d assume that we have a final cost Vd+1 : Xd+1 → [0,+∞]

giving a price to a battery in state X d+1 ∈ Xd+1

Solving the intraday problem with a final cost

min
X
d+1

,U
d

E
[
Ld(x ,Ud ,W d) + Vd+1(X d+1)

]
s.t X d+1 = fd(x ,Ud ,W d)

Ud = (Ud ,0, . . . ,Ud ,m, . . . ,Ud ,M)

σ(Ud ,m) ⊂ σ(W d ,0:m)

Gives a minute scale policy for day d that takes into account

the future through Vd+1, the daily value of energy storage
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We write a Bellman equation with daily time blocks

Daily Independence Assumption

{W d}d=0,...,D is a sequence of independent random variables

We set VD+1 = K and then by backward induction:

Vd(x) = min
X
d+1

,U
d

E
[
Ld(x ,Ud ,W d) + Vd+1(X d+1)

]
s.t X d+1 = fd(x ,Ud ,W d)

σ(Ud,m) ⊂ σ(W d,0:m)

where W d,0:m = (W d,0, . . . ,W d,m) = non independent random variables

Proposition (see Chapter 1 of the thesis)

Under Daily Independence Assumption V0 is the value of problem P
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We present two efficient time decomposition algorithms

to compute upper and lower bounds

of the daily value functions

1. Targets decomposition gives an upper bound

2. Weights decomposition gives a lower bound
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B: Algorithms for two-time scales

stochastic optimization

Targets decomposition algorithm



Decomposing by sending targets
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Stochastic targets decomposition

We introduce the stochastic target intraday problem

φ(d ,=)

(
xd ,X d+1

)
= min

U
d

E
[
Ld(x ,Ud ,W d)

]
s.t fd(x ,Ud ,W d) = X d+1

σ(Ud ,m) ⊂ σ(W d ,0:m)

Proposition

Under Daily Independence Assumption, Vd satisfies

Vd(x) = min
X∈L0(Ω,F ,P;Xd+1)

(
φ(d ,=)

(
x ,X

)
+ E

[
Vd+1(X )

])
s.t σ(X ) ⊂ σ(W d)
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Relaxed stochastic targets decomposition

We introduce a relaxed target intraday problem

φ(d ,≥)

(
xd ,X d+1

)
= min

U
d

E
[
Ld(x ,Ud ,W d)

]
s.t fd(x ,Ud ,W d) ≥ X d+1

σ(Ud ,m) ⊂ σ(W d ,0:m)

A relaxed daily value function

V(d ,≥)(x) = min
X∈L0(Ω,F ,P;Xd+1)

(
φ(d ,≥)

(
x ,X

)
+ E

[
V(d+1,≥)(X )

])
s.t σ(X ) ⊂ σ(W d)

Because of relaxation V(d,≥) ≤ Vd but V(d,≥) is hard to compute

due to the stochastic targets
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Relaxed deterministic targets decomposition

Now we can define value functions with deterministic targets:

V(d ,≥,Xd+1)(x) = min
X∈Xd+1

(
φ(d ,≥)

(
x ,X

)
+ V(d+1,≥,Xd+1)(X )

)
Monotonicity Assumption

The daily value functions Vd are non-increasing

Theorem

Under Monotonicity Assumption

• V(d ,≥) = Vd

• V(d ,≥,Xd+1) ≥ V(d ,≥) = Vd

There are efficient ways to compute the upper bounds V(d ,≥,Xd+1)
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Numerical efficiency of deterministic targets decomposition

Easy to compute by dynamic programming︷ ︸︸ ︷
V(d ,≥,Xd+1)(x) = min

X∈Xd+1

(
φ(d ,≥)

(
x ,X

)︸ ︷︷ ︸
Hard to compute

+V(d+1,≥,Xd+1)(X )
)

It is challenging to compute φ(d ,≥)

(
x ,X

)
for each couple (x ,X )

and each day d but

• We can exploit periodicity of the problem, e.g φ(d ,≥) = φ(0,≥)

• In some cases φ(d ,≥)

(
x ,X

)
= φ(d ,≥)

(
x − X , 0

)
• We can parallelize φ(d ,≥) computation on day d

• We can use any suitable method to solve the multistage

intraday problems φ(d ,≥) (SDP, scenario tree based SP...)
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B: Algorithms for two-time scales

stochastic optimization

Weights decomposition algorithm



Decomposing by sending weights
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Stochastic weights decomposition

We introduce the dualized intraday problems

ψ(d,?)(xd ,λd+1) = min
U
d

E
[
Ld(xd ,Ud ,W d) + 〈λd+1, fd(xd ,Ud ,W d)〉

]
s.t σ(Ud,m) ⊂ σ(W d,0:m)

Note that ψ(d,?) might be simpler than φ(d,≥) (state reduction)

Stochastic weights daily value function

V(d,?)(xd) = sup
λ
d+1
∈Lq(Ω,F,P;Λd+1)

ψ(d,?)(xd ,λd+1)−
(
EV(d+1,?)

)?
(λd+1)

s.t σ(λd+1) ⊂ σ(X d+1)

where
(
EV
)?

(λd+1) = sup
X∈Lp(Ω,F,P;Xd+1)

〈λd+1,X 〉 − E
[
V (X )

]
is the Fenchel transform of EV
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Deterministic weights decomposition

We define value functions with deterministic weights

V(d ,?,E)(xd) = sup
λd+1∈Λd+1

ψ(d ,?)(xd , λd+1)− V ∗(d+1,?,E)(λd+1)

Theorem

By weak duality and restriction, we get V(d ,?,E) ≤ V(d ,?) ≤ Vd

If ri
(
dom(ψ(d ,?)(xd , ·))− dom(EVd+1(·))

)
6= ∅ and P is convex

then we have V(d ,?,E) ≤ V(d ,?) = Vd

There are efficient ways to compute the lower bounds V(d ,?,E)
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Numerical efficiency of deterministic weights decomposition

Easy to compute by dynamic programming︷ ︸︸ ︷
V(d ,?,E)(xd) = sup

λd+1∈Λd+1

ψ(d ,?)(xd , λd+1)︸ ︷︷ ︸
Hard to compute

−V ∗(d+1,?,E)(λd+1)

It is challenging to compute ψ(d ,?)(x , λ) for each couple (x , λ) and

each day d but

• Under Monotonicity Assumption,

we can restrict to positive weights λ ≥ 0

• We can exploit periodicity of the problem ψ(d ,?) = ψ(0,?)

• We can parallelize ψ(d ,?) computation on day d
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We will use the daily value functions

upper and lower bounds
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Back to daily intraday problems with final costs

We obtained two bounds V(d ,?,E) ≤ Vd ≤ V(d ,≥,Xd+1)

Now we can solve all intraday problems with a final cost

min
X
d+1

,U
d

E
[
Ld(x ,Ud ,W d) + Ṽd+1(X d+1)

]
s.t X d+1 = fd(x ,Ud ,W d)

σ(Ud ,m) ⊂ σ(W d ,0:m)

with Ṽd+1 = V(d ,≥,Xd+1) or Ṽd+1 = V(d ,?,E)

We obtain one targets and one weights minute scale policies
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B: Algorithms for two-time scales

stochastic optimization

Numerical results



We present numerical results associated to two real use cases

Common data: load/production from a house with solar panels

1. Managing a given battery charge and health on 5 days

to compare our algorithms to references on a “small” instance

2. Managing batteries purchases, charge and health on 7300 days

to show that targets decomposition scales
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Application 1: managing charge and aging of a battery

We control a battery

• capacity c0 = 13 kWh

• h0,0 = 100 kWh of exchangeable energy (4 cycles remaining)

• over D = 5 days or D ×M = 7200 minutes

• with 1 day periodicity

We compare 4 algorithms

1. Stochastic dynamic programming

2. Stochastic dual dynamic programming

3. Targets decomposition (+ SDDP for intraday problems)

4. Weights decomposition (+ SDP for intraday problems)
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Decomposition algorithms provide tighter bounds

We know that

• V sddp
d ≤ Vd ≤ V sdp

d

• V(d ,?,E) ≤ Vd ≤ V(d ,≥,Xd+1)

We observe that V sddp
d ≤ V(d ,?,E) ≤ V(d ,≥,Xd+1) ≤ V sdp

d

We beat SDP and SDDP (that cannot fully handle 7200 stages)
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Computation times and convergence

SDP Weights SDDP Targets

Total time (with parallelization) 22.5 min 5.0 min 3.6 min 0.41 min

Gap (200 × mc−v
mc+v

) 0.91 % 0.32 % 0.90 % 0.28 %

The Gap is between Monte Carlo simulation (upper bound)

and value functions at time 0

• Decomposition algorithms display smaller gaps

• Targets decompositon + SDDP is faster than SDDP

• Weights decomposition + SDP is faster than SDP
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Application 2: managing batteries purchases, charge and aging

• 20 years, 10, 512, 000 minutes, 1 day periodicity

• Battery capacity between 0 and 20 kWh

• Synthetic scenarios for batteries prices

SDP and SDDP fail to solve such a problem over 10, 512, 000 stages!
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Target decomposed SDDP solves 10, 512, 000 stages problems

Computing daily value functions by dynamic programming takes 45 min︷ ︸︸ ︷
V(d ,≥,Xd+1)(x) = min

X∈Xd+1

(
φ(d ,≥)

(
x ,X

)︸ ︷︷ ︸
Computing φ(d,≥)

(
·, ·
)

with SDDP takes 60 min

+V(d+1,≥,Xd+1)(X )
)

Complexity: 45 min + D × 60 min

• Periodicity: 45 min + N × 60 min with N << D

• Parallelization: 45 min + 60 min
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Does it pay to control aging?

We draw one battery prices scenario and one solar/demand scenario over

10, 512, 000 minutes and simulate the policy of targets algorithm

We make a simulation

of 10, 512, 000 decisions

in 45 minutes

We compare to a policy that

does not control aging

• Without aging control: 3 battery purchases

• With aging control: 2 battery purchases

It pays to control aging with targets decomposition! 54/59



Conclusion

1. We have solved problems

with millions of time steps

using targets decomposed SDDP

2. We have designed control strategies

for sizing/charging/aging/investment

of batteries

3. We have used our algorithms to improve

results obtained with algorithms sensitive

to the number of time steps (SDP, SDDP)
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What about implementability?

Our algorithms should be usable

in real world applications!
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C: Software and experimentations



We design embeddable strategies for real energy systems
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DynOpt.jl: a Julia package for stochastic optimization

Features:

• Julia API to formulate

stochastic optimization

problems

• Julia API to build and simulate

policies

• Resolution algorithms:

• OLFC - MPC

• SDP

• Value iterations

• SDDP

• MIDAS (experimental)

• Easy deployment in any Linux

machine using Docker
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MµGO: energy management packaging of DynOpt
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We used DynOpt to control the temperature in a house
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Contributions and perspectives

• We have applied a fair method to compare

stochastic optimal control methods on a subway station use case

displaying promising energy efficiency results

There remains to apply on a real demonstrator

• We have designed two time decomposition algorithms

to tackle large multistage problems

• Both can efficiently decompose problems for algorithms

sensitive to the number of time stages (SDP, SDDP)

There remains to experiment with other algorithms

(MIDAS, Progressive Hedging, SDDIP...)

• Targets decomposition is computationally efficient to solve very

large problems (more than 10, 000, 000 time stages)

There remains to apply weights decomposition

• We have developed a generic library to solve stochastic optimization

problems and have used it to manage the temperature in a house

There remains to implement our library for larger microgrids

with Efficacity and our partners 59/59



Thank you for your attention
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