# A Stochastic Min-plus Algorithm for Deterministic Optimal Control

# In short

In her thesis, Zheng Qu [1] exploited the min-plus linearity of the Bellman operators associated with a continuous time linear-quadratic optimal control problem, which involves both continuous and discrete controls, in order to build a stochastic algorithm for such a deterministic framework.

Here, we describe an adaptation of her work in discrete time and show that this adaptation converges almost surely to the value functions after a finite number of steps.

# - Introduction

We will denote by  $\mathbb{X} := \mathbb{R}^n$  the space of states, by  $\mathbb{U} := \mathbb{R}^m$  the space of continuous controls and let W be a finite set of discrete controls. We want to solve the following deterministic multistage optimal control problem involving mixed continuous and discrete controls

$$\min_{\substack{x \in \mathbb{X}^{T} \\ (u,v) \in (\mathbb{U} \times \mathbb{V})^{T-1}}} \sum_{t=0}^{T-1} c_{t}^{v_{t}}(x_{t}, u_{t}) + \psi(x_{T}) \\
s. t. \begin{cases} x_{t+1} = f_{t}^{v_{t}}(x_{t}, u_{t}) \\ x_{0} \in \mathbb{X} \text{ is given,} \end{cases}$$
(1)

#### **II - Assumptions**

For every time  $t \in [0, T-1]$  and for every discrete control  $v \in \mathbb{V}$ :

- The dynamic  $f_t^v : \mathbb{X} \times \mathbb{U} \to \mathbb{X}$  is linear.
- The cost function  $c_t^v : \mathbb{X} \times \mathbb{U} \to \mathbb{R} \cup \{+\infty\}$  is (jointly) convex.
- The final cost function  $\psi : \mathbb{X} \to \mathbb{R} \cup \{+\infty\}$  is convex.

# Marianne AKIAN<sup>(1)</sup>, Jean-Philippe CHANCELIER<sup>(2)</sup> and Benoît $TRAN^{(2)}$

(1) École Polytechnique, CMAP and INRIA (2) École Nationale des Ponts et Chaussées, CERMICS

### **III - Dynamic Programming**

Following the Dynamic Programming principle, the For a general switched deterministic optimal control problem, given a fixed discrete control  $v \in \mathbb{V}$  the solution of Problem (1) is given by the solution of the Bellman Equation : Bellman Operators

$$\begin{cases} V_T := \psi \\ V_t := \inf_{(u,v) \in \mathbb{U} \times \mathbb{V}} c_t^v(\cdot, u) + V_{t+1}(f_t^v(\cdot, u)) . \end{cases} \text{ are} \end{cases}$$

We now introduce the Bellman Operator  $\mathcal{B}_t$ , for every functional  $\phi : \mathbb{X} \to \mathbb{R}$  we define :

$$\mathcal{B}_t(\phi) := \inf_{(v,u) \in \mathbb{V} \times \mathbb{U}} c_t^v(\cdot, u) + \phi\left(f_t^v(\cdot, u)\right).$$

Thus we can rewrite the dynamic programming principle as :

$$\begin{cases} V_T = \psi \\ V_t : x \in \mathbb{X} \mapsto \mathcal{B}_t(V_{t+1})(x). \end{cases}$$

# Important result : (sur)approximations by convex functions

For every time  $t \in [0, T]$ , there exists a finite non-empty set  $Q_t$  of convex functions such that  $V_t = \inf_{q \in Q_t} q$ .

#### V - Main observation

#### We have that

 $\operatorname{Card}(Q_t) = \operatorname{Card}(Q_{t+1}) \cdot \operatorname{Card}(\mathbb{V}).$ 

Thus the cardinality of  $Q_t$  grows exponentially as tdecreases to 0.

Hence, naive computations of the value function lead to untractable algorithms.

We describe a tractable algorithm which approximates the value function  $V_t$  by a function  $V_t^k$  which will be defined as a minimum over a finite subset  $Q_t^k$ of  $Q_t$ :

$$V_t^k := \inf_{q \in Q_t^k} q \ge \inf_{q \in Q_t} q =: V_t.$$

# **IV - Bellman Operators**

$$\mathcal{B}_t^v(\phi) := \inf_{u \in \mathbb{T}} c_t^v(\cdot, u) + \phi\left(f_t^v(\cdot, u)\right).$$

re *min-plus linear* and preserve the set of the convex functions.

• If  $\phi_1$  and  $\phi_2$  are two functionals over X, then we have :

$$\inf_{\phi \in \{\phi_1,\phi_2\}} \mathcal{B}_t^v(\phi) = \mathcal{B}_t^v\left(\inf_{\phi \in \{\phi_1,\phi_2\}} \phi\right).$$

• If  $\lambda$  is a constant function and  $\phi$  is a functional on  $\mathbb{X}$ , then we have :

$$\mathcal{B}_t^v(\lambda + \phi) = \lambda + \mathcal{B}_t^v(\phi).$$

• If  $\phi : \mathbb{X} \to \mathbb{R}$  is a convex function then  $\mathcal{B}^{v}_{t}(\phi)$  is also a convex function.

# **VI - Stochastic min-plus algorithm**

- We set for every time  $t \in [0, T]$  and for every  $k \ge 0$ ,  $V_t^k := \inf_{q \in Q_t^k} q$  where  $Q_t^k \subset Q_t$ . For every  $t \in Q_t$  $\llbracket 0, T-1 \rrbracket$  we fix a compact  $K_t$ .
- For k = 0, define for every  $t \in [0, T], Q_t^0 := \emptyset$ . • For every  $k \ge 1$ , **input** :  $Q_t^k$ .

• Draw  $x_t^{k+1}$  from a probability law  $\mu_t$  whose support is  $K_t$ .

• If  $\mathcal{B}_t(V_{t+1}^{k+1})(x_t^{k+1}) < V_t^k(x_t^{k+1})$  then, for some  $q \in \underset{q' \in Q_{t+1}^{k+1}}{\operatorname{arg\,min}} \mathcal{B}_t\left(q'\right)\left(x_t^{k+1}\right),$ 

**output** :  $Q_t^k \cup \{q\}$ . Otherwise, **output** :  $Q_t^k$ .

This algorithm needs to compute  $\mathcal{B}_t(\phi)$  where  $\phi$ is convex. It works at least when  $\phi$  is convex and quadratic by solving an algebraic Riccati Equation. Moreover the image  $\mathcal{B}_{t}^{v}(\phi)$  is also convex and quadratic.

[1] Zheng Qu. Nonlinear Perron-Frobenius Theory and Max-plus Numerical Methods for Hamilton-Jacobi Equations. PhD thesis, Ecole Polytechnique X, October 2013.

# VII - Computational remark

# Convergence result

For every  $t \in [0, T]$  the sequence of surapproximations  $(V_t^k)_{k\in\mathbb{N}}$  is equal to  $V_t$  on  $K_t$  for k large enough. That is, almost surely there exists a rank  $k^*$  such that for every  $k \ge k^*$  and  $x \in K_t$  we have

 $V_t(x) = V_t^k(x).$ 

# VIII - Future work

• Extend the current work when the supports change with k.

• Extend to the stochastic case.

• Numerical experiments.

# References



