fft

fft — fast Fourier transform.

Calling sequence

[x]=fft(a,-1)  
[x]=fft(a,1)  
x=fft(a,-1,dim,incr)  
x=fft(a,1,dim,incr)  

Parameters

x : real or complex vector. Real or complex matrix (2-dim fft)
a : real or complex vector.
dim : integer
incr : integer

Description

Short syntax (one or two dimensional fft):

x=fft(a,-1) gives a direct transform (the -1 refers to the sign of the exponent..., NOT to "inverse"), that is

x(k)=sum over m from 1 to n of a(m)*exp(-2i*pi*(m-1)*(k-1)/n)

for k varying from 1 to n (n=size of vector a).

a=fft(x,1) performs the inverse transform normalized by 1/n.

(fft(fft(.,-1),1) is identity).

When the first argument given to fft is a matrix a two-dimensional FFT is performed.

Long syntax (multidimensional FFT):

x=fft(a,-1,dim,incr) allows to perform an multidimensional fft.

If a is a real or complex vector implicitly indexed by x1,x2,..,xp i.e. a(x1,x2,..,xp) where x1 lies in 1..dim1,x2 in 1.. dim2,... one gets a p-dimensional FFT p by calling p times fft as follows



 a1=fft(a ,-1,dim1,incr1)
 a2=fft(a1,-1,dim2,incr2) ...
   
        

where dimi is the dimension of the current variable w.r.t which one is integrating and incri is the increment which separates two successive xi elements in a.

In particular,if a is an nxm matrix, x=fft(a,-1) is equivalent to the two instructions:

a1=fft(a,-1,m,1) and x=fft(a1,-1,n,m).

if a is an hypermatrix (see hypermat) fft(a,flag) performs the N dimensional fft of a.

Examples



a=[1;2;3];n=size(a,'*');
norm(1/n*exp(2*%i*%pi*(0:n-1)'.*.(0:n-1)/n)*a -fft(a,1))
norm(exp(-2*%i*%pi*(0:n-1)'.*.(0:n-1)/n)*a -fft(a,-1))  
 
  

See also

corr