gfrancis

gfrancis — Francis equations for tracking

Calling sequence

[L,M,T]=gfrancis(Plant,Model)  

Parameters

Plant : syslin list
Model : syslin list
L,M,T : real matrices

Description

Given the the linear plant:



    x'= F*x + G*u 
    y = H*x + J*u
   
    

and the linear model



    xm'= A*xm + B*um
    ym = C*xm + D*um
   
    

the goal is for the plant to track the model i.e. e = y - ym ---> 0 while keeping stable the state x(t) of the plant. u is given by feedforward and feedback



 u = L*xm + M*um + K*(x-T*xm) = [K , L-K*T] *(x,xm) + M*um
   
    

The matrices T,L,M satisfy generalized Francis equations



    F*T + G*L = T*A
    H*T + J*L = C
          G*M = T*B
          J*M = D
   
    

The matrix K must be chosen as stabilizing the pair (F,G) See example of use in directory demos/tracking.

Examples



Plant=ssrand(1,3,5);
[F,G,H,J]=abcd(Plant);
nw=4;nuu=2;A=rand(nw,nw);
st=maxi(real(spec(A)));A=A-st*eye(A);
B=rand(nw,nuu);C=2*rand(1,nw);D=0*rand(C*B);
Model=syslin('c',A,B,C,D);
[L,M,T]=gfrancis(Plant,Model);
norm(F*T+G*L-T*A,1)
norm(H*T+J*L-C,1)
norm(G*M-T*B,1)
norm(J*M-D,1)
 
  

See also

lqg, ppol