ldiv

ldiv — polynomial matrix long division

Calling sequence

[x]=ldiv(n,d,k)   

Parameters

n,d : two real polynomial matrices
k : integer

Description

x=ldiv(n,d,k) gives the k first coefficients of the long division of n by d i.e. the Taylor expansion of the rational matrix [nij(z)/dij(z)] near infinity.

Coefficients of expansion of nij/dij are stored in x((i-1)*n+k,j) k=1:n

Examples



wss=ssrand(1,1,3);[a,b,c,d]=abcd(wss);
wtf=ss2tf(wss);
x1=ldiv(numer(wtf),denom(wtf),5)
x2=[c*b;c*a*b;c*a^2*b;c*a^3*b;c*a^4*b]
wssbis=markp2ss(x1',5,1,1);
wtfbis=clean(ss2tf(wssbis))
x3=ldiv(numer(wtfbis),denom(wtfbis),5)
 
  

See also

arl2, markp2ss, pdiv