Scilab Reference Manual |
---|
wiener — Wiener estimate
[xs,ps,xf,pf]=wiener(y,x0,p0,f,g,h,q,r)
f, g, h | : system matrices in the interval [t0,tf]
| ||||||
q, r | : covariance matrices of dynamics and observation noise
| ||||||
x0, p0 | : initial state estimate and error variance | ||||||
y | : observations in the interval [t0,tf]. y=[y0,y1,...,yf], and yk is a column m-vector | ||||||
xs | : Smoothed state estimate xs= [xs0,xs1,...,xsf], and xsk is a column n-vector | ||||||
ps | : Error covariance of smoothed estimate ps=[p0,p1,...,pf], and pk is a nxn matrix | ||||||
xf | : Filtered state estimate xf= [xf0,xf1,...,xff], and xfk is a column n-vector | ||||||
pf | : Error covariance of filtered estimate pf=[p0,p1,...,pf], and pk is a nxn matrix |
function which gives the Wiener estimate using the forward-backward Kalman filter formulation
C. B.
<< wfir | wigner >> |