Fermer X

Risk and Decision

Michel De Lara
(last modification date: October 10, 2017)
Version pdf de ce document
Version sans bandeaux

Contents

We consider uncertainty modelled here by a set Ω, containing issues or scenarios. We present some classical measures attached to a scalar prospect (random variable) X : Ω . Here, X represents a gain, a profit, a position, the value of a portfolio, etc., in a word a prospect while X represents a loss.

When focusing on situations of risk, we shall suppose that Ω carries a probability (defined on a σ-field , so that (Ω,, ) is a probability space). The expectation under probability is denoted by 𝔼.

1 Value at Risk

The Value at Risk of a prospect X at level λ ]0, 1[ is

V aR  (X  ) := inf{m ∈ ℝ | ℙ (m + X  ≤ 0) < λ }.
     λ
(1)

Intuitively, saying that the V aR5% of a portfolio is 100 means that the loss X will be larger than 100 with probability at most 5%. However, V aR5% does not inform on the size of the loss.

1.1 Value at Risk of a log-normal prospect

Question 1 Compute the Value at Risk at different levels (1 %, 5 %, 10 %) of a log-normal prospect. Draw the empirical cumulated distribution of a log-normal prospect.

A prospect X is said to be log-normal if X > 0 and log X ∼𝒩(μ,σ2).


PIC

Figure 1: Empirical cumulated distribution of a Log-Normal prospect X, such that log X 𝒩(μ,σ2) with μ = 1 and σ2 = 0.09. We observe that V aR 10%(X) ≈−0.33.

stacksize(2*10^8);  
N=10^8; // number of simulations  
mean=-1;  
variance=0.09;  
Y=grand(1,N,'nor',mean,variance) ; // simulation of a Normal r.v.  
Z=sort(exp(Y));  
// decreasing sort of the simulated realizations of a Log-Normal r.v.  
values=  Z($:-1:1) // increasing sorting  
 
// the VaR is -quantile  
lambda=0.01;  
quantile=values(int(lambda*N));  
disp('VaR_('+string(lambda) +')(Z)='+string(-quantile))  
 
lambda=0.05;  
quantile=values(int(lambda*N));  
disp('VaR_('+string(lambda) +')(Z)='+string(-quantile))  
 
lambda=0.10; // level  
quantile=values(int(lambda*N));  
disp('VaR_('+string(lambda) +')(Z)='+string(-quantile))  
 
xset('window',10) ; xbasc(); plot2d(values,linspace(0,1,N));  
plot2d(values,lambda*ones(values),style=5);  
xtitle('Empirical cumulated distribution of a Log-Normal prospect X: ...  
log(X) ~ N(' +string(mean) +',' +string(variance)+ ')')  
 
xset('window',11) ; xbasc(); histplot(10,Z);  
xtitle('Empirical histogram of a Log-Normal prospect X: ...  
log(X) ~ N(' +string(mean) +',' +string(variance)+ ')')  

1.2 Value at Risk and portfolio diversification

(Frey and McNeil2002)

Corporate bonds are sold at 95 $ and return 100 $ except in 2 % of cases where they lose all value. The prospect Xi provided is thus Xi = 100𝜀i 95 ∈{5,95}, where (𝜀i = 1) = 0.98 and (𝜀i = 0) = 0.02.

First, let us consider a fully concentrated portfolio C = 100X1, consisting of 100 units of the first bond. Second, let us consider a fully diversified portfolio D = 2 i=150X i, consisting of 2 units of each bond. The 𝜀1, …, 𝜀50 are supposed to be independent.

Question 2 Using the fact that V aR5%(𝜀1) = 1, and positive homogeneity and translation-invariance of V aR5%, compute V aR5%(X1), then V aR5%(C). Estimate V aR5%(D) by simulation. Conclude that withdrawing up to 500 $ from the fully concentrated portfolio C makes it acceptable, while you need to add a capital of at least 100 $ to the fully diversified portfolio D to make this latter acceptable.


PIC

Figure 2: Empirical cumulated distribution of the diversified portfolio

N=1000;  
bb=50; // 50 independent couples of bonds  
A=rand(bb,N);  
EPS= 0.5 * ( 1 + sign(A-0.02) ) ;  
// an array where each column contains  
// bb independent realizations of the r.v. epsilon  
DD=sum( 2 * (100 * EPS - 95 ) , 'r') ;  
// N realizations of the diversified portfolio D  
 
// xset('window',12) ; xbasc(); histplot(10,DD);  
// xtitle('Empirical histogram of the diversified portfolio D')  
 
SDD=sort(DD);  
values=  SDD($:-1:1);  
lambda=0.05;  
 
xset('window',13) ; xbasc(); plot2d(values,linspace(0,1,N));  
plot2d(values,lambda*ones(values),style=5);  
xtitle('Empirical cumulated distribution ...  
of the diversified portfolio DD')  
 
VaR=-values(int(lambda*N));  
disp('The Value at Risk of the diversified portfolio D is ')  
disp('VaR_('+string(lambda) +')(DD)='+string(VaR))  

2 Expected utility theory

The lottery (w , p ;⋅⋅⋅;w ,p )
   1  1      n  n  describes a hazard situation where

  • the outcome w1 may appear with probability p1,
  • wn with probability pn,

where all probabilities are greater than or equal to zero and sum up to one (100% chance).

Suppose that the outcomes (w ,⋅⋅⋅,w  )
  1       n  are scalar. Let us be given a utility function w  ↦→ U (w )  . The value of the lottery is the expectation of the utilities U (w1),⋅⋅⋅,U (wn )  :

EU  = p1U (w1) + ⋅⋅⋅ + pnU (wn ).

In a choice situation between two lotteries, the expected utility maximizer will select the one with the highest EU.

2.1 Expected utility of a simple lottery

3 $ 50% -1 $50%

Question 3 Compute the expected utility of the lottery (3 $,50%; − 1 $,50% )  for the utility function U(w ) = − e−2w   .

function v=EU(lottery,utility)  
values=utility(lottery(1,:));  
probabilities=lottery(2,:);  
v=sum(probabilities.*values) ;  
endfunction  
 
lottery=...  
[3 -1; // outcomes  
0.5 0.5] ; // probabilities  
 
function u=utility(w)  
  u=-%e^{-2*w};  
endfunction  
 
v=EU(lottery,utility)  

2.2 Allais’ paradox

Experiment 1

Lottery 1Y 1 000 000 $ 100% versus Lottery 1Z 1 000 000 $ 89% 0 $1% 5 000 000 $10%

Question 4 Which of the two above lotteries do you personnaly prefer? Load the function EU following Question 3. Compute the expected utility of the lotteries (1 000 000 $, 100% )  and (1 000 000 $,89%;  0 $,1%; 5 000 000 $,10% )  for different utility functions:

  • CARA U (w) = − e−Aw   , A > 0;
  • CRRA U (w) =  w1−-γ
         1−γ   , γ > 0, γ = 1, w > 0.

For each utility function, tell which lottery is prefered to the other one, and explain the reasons of your choice.

lottery_1Z=...  
[1000000 0 5000000; // outcomes  
0.89 0.01 0.1] ; // probabilities  
 
A=1;  
function u=CARA(w)  
  u=-%e^{-A*w};  
endfunction  
 
v_1Z=EU(lottery_1Z,CARA)  
 
gama=0.5;  
function u=CRRA(w)  
  u= w^{1-gama}/(1-gama) ;  
endfunction  
 
v_1Z=EU(lottery_1Z,CRRA)  

Experiment 2

Lottery 2Y 1 000 000 $ 11% 0 $89% versus Lottery 2Z 5 000 000 $ 10% 0 $90%

Question 5 Same questions as in Question 5 for the lotteries (1 000 000 $,11%;  0 $,89% )  and (5 000 000 $,10%; 0 $, 90% )  .

Question 6 What do you conclude from your own preferences, compared to the expected utility evaluations of Questions 4 and 5? What is the relation with Allais’ paradox?

2.3 Bank questionnaire

In a bank questionnaire, the customer answers a series of questions ranging from 8 to 13. In question k, he is asked which lottery he prefers between a certain lottery LOTTERY_C(k) and a 50%-50% risky lottery LOTTERY_R(k).

LOTTERY_C=list();  
LOTTERY_R=list();  
 
LOTTERY_C(8)=...  
[20000; // outcomes  
1] ; // probabilities  
 
LOTTERY_R(8)=...  
[40000 13400; // outcomes  
0.5 0.5] ; // probabilities  
 
LOTTERY_C(9)=...  
[20000; // outcomes  
1] ; // probabilities  
 
LOTTERY_R(9)=...  
[40000 10000; // outcomes  
0.5 0.5] ; // probabilities  
 
LOTTERY_C(10)=...  
[20000; // outcomes  
1] ; // probabilities  
 
LOTTERY_R(10)=...  
[40000 16000; // outcomes  
0.5 0.5] ; // probabilities  
 
LOTTERY_C(11)=...  
[3000; // outcomes  
1] ; // probabilities  
 
LOTTERY_R(11)=...  
[6000 2000; // outcomes  
0.5 0.5] ; // probabilities  
 
LOTTERY_C(12)=...  
[3000; // outcomes  
1] ; // probabilities  
 
LOTTERY_R(12)=...  
[6000 1500; // outcomes  
0.5 0.5] ; // probabilities  
 
LOTTERY_C(13)=...  
[3000; // outcomes  
1] ; // probabilities  
 
LOTTERY_R(13)=...  
[6000 2400; // outcomes  
0.5 0.5] ; // probabilities  

Question 7 Load the function EU following Question 3. Test wether lottery LOTTERY_C(k) is prefered to the 50%-50% risky lottery LOTTERY_R(k) for k = 8,, 13, for the CARA utility functions            −Aw
U (w) = − e   , A > 0. Compute the Arrow-Pratt coefficient of absolute risk aversion     ′′      ′
− U  (w )∕U (w )  . Select a proper range of values for the parameter A. How do you explain what you observe when the parameter A varies?

TEST_CARA=[];  
 
for k=8:13  
  lottery_C=LOTTERY_C(k);  
  lottery_R=LOTTERY_R(k);  
  v_C=[];  
  v_R=[];  
 
rangeA=10^(-4)*[0.3:0.5:4];  
 
 for A=rangeA  
function u=CARA(w)  
  u=-%e^{-A*w};  
endfunction  
    v_C=[v_C,EU(lottery_C,CARA)];  
    v_R=[v_R,EU(lottery_R,CARA)];  
  end  
 
  TEST_CARA=[TEST_CARA;v_C-v_R];  
end  

Question 8 Same question for the CRRA utility functions         w1−γ
U (w) =  1−γ   , γ > 0, γ = 1, w > 0. Compute the Arrow-Pratt coefficient of relative risk aversion      ′′      ′
− wU  (w )∕U (w )  . How do you explain what you observe when the parameter γ varies? Compare your results with the one in the document Lettre à S. by the economist Laurent Denant-Boemont. Do you agree with all his comments?

TEST_CRRA=[];  
 
for k=8:13  
  lottery_C=LOTTERY_C(k);  
  lottery_R=LOTTERY_R(k);  
  v_C=[];  
  v_R=[];  
 
//  for gama=[0.5 1.5] //  
for gama=0.05:0.2:2 // to avoid gama=1  
    function u=CRRA(w)  
      u= w^{1-gama}/(1-gama) ;  
    endfunction  
    v_C=[v_C,EU(lottery_C,CRRA)];  
    v_R=[v_R,EU(lottery_R,CRRA)];  
end  
 
  TEST_CRRA=[TEST_CRRA;v_C-v_R];  
end  
 
TEST_CRRA  

Question 9 Same question for the power-expo utility functions         1−exp(−-Aw1−γ)
U (w ) =       A   , 1 > γ > 0, w > 0.

TEST_SAHA=[];  
 
for k=8:13  
  lottery_C=LOTTERY_C(k);  
  lottery_R=LOTTERY_R(k);  
  v_C=[];  
  v_R=[];  
 
  A=0.08;  
//  for gama=0.8  
for gama=0.05:0.2:1  
    function u=SAHA(w)  
      u=(1-%e^{-A*w^(1-gama)})/A;  
    endfunction  
    v_C=[v_C,EU(lottery_C,SAHA)];  
    v_R=[v_R,EU(lottery_R,SAHA)];  
end  
 
  TEST_SAHA=[TEST_SAHA; v_C-v_R ];  
end  
 
TEST_SAHA  

2.4 Test your own relative risk aversion

(from (Gollier2001, p. 30)).

Suppose that you are a decision-maker who evaluates any prospect X by

                        w1 −γ
𝔼(U (X )) where U(w ) = ------
                        1 − γ
(2)

is a CRRA (constant relative risk aversion) utility function. The parameter γ > 0 is the relative risk aversion parameter.

Consider the situation where you face the risk of gaining or losing a share 𝜃 of your wealth w0 with equal probability. The relative risk premium πγ(𝜃) is implicitely defined by

                                   1                1
U (w0(1 − π γ(𝜃 ))) = 𝔼 [U (w0X  )] = -U (w0(1 − 𝜃)) + -U  (w0 (1 + 𝜃))
                                   2                2
(3)

where X takes values 1 𝜃 and 1 + 𝜃 with equal probability 12. The relative risk premium πγ(𝜃) is the share of your wealth that you are ready to pay to escape this risk.

Question 10 Give the formula for πγ(𝜃). For each 𝜃 =5 %, 15 %, 25 %, draw the curve giving the relative risk aversion parameter γ as a function of the relative risk premium. Fill in the second column of Table 2.4 with your relative risk premium and compute your relative risk aversion. Comment on what you observe.

//

theta=0.25 ;  
gama=0.5:0.9:40; // avoid the value gama=1  
premium=1-(0.5*(1-theta).^{1-gama}+...  
0.5*(1+theta).^{1-gama}).^{1 ./(1-gama)};  
xset('window',20) ; xbasc(); plot2d(premium,gama);  
 
xtitle('Relative risk aversion parameter as function of ...  
relative risk premium when theta= '+string(theta))  
 
//=========================================================  
disp("=======================================");  
 
// istring=0;  
 
for theta=[0.05:0.10:0.25];  
str="for theta="+string(theta)+", " ;  
// istring=istring+1;  
yourgama=[];  
for yourpremium=[0.00:0.025:0.1 0.15 0.20];  
  deff('y=f(gama)', 'y=1-(0.5*(1-theta).^{1-gama}+...  
   0.5*(1+theta).^{1-gama}).^{1 ./(1-gama)} - yourpremium' );  
  yourgama=[yourgama,fsolve(2,f)];  
end  
// mess(istring)=str+"the relative risk premium is ";  
disp(str+ "to your premium")  
disp(yourpremium)  
disp("corresponds the relative risk aversion parameter")  
disp(yourgama)  
end  
 
 
//=========================================================  
function yourgama=mygamma(theta,yourpremium)  
yourgama=[];  
for j=1:(prod(size(theta)))  
  deff('y=f(gama)', 'y=1-(0.5*(1-theta(j)).^{1-gama}+...  
   0.5*(1+theta(j)).^{1-gama}).^{1 ./(1-gama)} - yourpremium(j)' );  
  yourgama=[yourgama,fsolve(2,f)];  
end  
endfunction  
 
theta=[0.05:0.10:0.25];  
yourpremium=[0.02 0.05 0.15];  
disp("My likely relative risk aversion parameters are")  
mygamma(theta,yourpremium)  
 
// 


PIC

Figure 3: Relative risk aversion parameter as function of relative risk premium for 𝜃 = 0.25





gaining or losing fraction of your wealth relative risk aversion
a share 𝜃 of your wealththat you are ready to pay parameter
(empirical risk premium)



5 %



15 %



25 %




Table 1: Fill in the second column with your relative risk premium and compute your relative risk aversion. Check the range of parameters γ obtained.

3 Cumulative Prospect Theory

3.1 Definition

(From (Kahneman and Tversky1979Tversky and Kahneman1992))

Suppose that the prospect X takes a finite number of values

x −m <  x−m+1 <  x−1 < ⋅⋅⋅ < x0 = 0 < x1 < ⋅⋅⋅ < xn−1 < xn
(4)

with corresponding probabilities (nonnegative and summing up to one)

p −m,p− m+1,⋅⋅⋅,p− 1,p0,p1,⋅⋅⋅,pn−1,pn.
(5)

The evaluation of a prospect with null anchor x0 = 0 is given by

                               (
                               |               ∑n
                               |||  V (X+ )  =      π+i U (xi)
                               ||{               i=0
V (X ) = V (X+  ) + V (X − ) with               ∑0
                               ||  V (X − ) =       π −U (xi)
                               ||||               i=− m  i
                               (
(6)

where U is a strictly increasing function such that U(0) = 0. When the anchor x0 is not necessarily zero, we evaluate the prospect by V (X x0). The weighting functions for gains and losses are given by

(   +        +
||{  πn  =   w  (pn)
   π+i  =   w+ (pi + ⋅⋅⋅ + pn) − w+ (pi+1 + ⋅⋅⋅ + pn), i = 0,...,n − 1
|  π−m  =   w − (p−m )
|(  π−  =   w − (p  +  ⋅⋅⋅ + p ) − w − (p + ⋅⋅⋅ + p  ),  i = − m, ...,0
    i           −m          i        − m          i−1
(7)

where w+ and w are increasing functions satisfying w+(0) = w(0) = 0 and w+(1) = w(1) = 1. In (Tversky and Kahneman1992), one finds

        {
                 xα  if x ≥  0
U (x ) =   − λ(− x)β  if x <  0
(8)

with experimental evidence consistent with

α =  β = 0.88 and λ = 2.25.
(9)

For the weighting functions, (Tversky and Kahneman1992) proposes

  +      --------pγ+---------       −      ---------pγ−--------
w  (p) =   γ+         γ+ 1∕γ+ and w  (p) =   γ−          γ− 1∕γ−
         [p  +  (1 − p)  ]                  [p   + (1 − p)  ]
(10)

with parameter values

γ+ =  0.61 and γ− = 0.69.
(11)

3.2 General Scilab code

Cumulative Prospect Theory: Scilab code

//

function w=distorsion(p,ggamma)  
w= p^ggamma ./ ( ( p^ggamma + (1-p)^ggamma )^{1/ggamma} )  
endfunction  
 
ggamma_plus= 0.61;  
ggamma_minus= 0.69;  
 
function pi=weight(proba,ggamma)  
cumul_proba=cumsum(proba);  
distort_cumul_proba = distorsion( cumul_proba , ggamma ) ;  
ip = distort_cumul_proba - [0 distort_cumul_proba(1:($-1))];  
pi=ip($:(-1):1);  
endfunction  
 
alpha=0.88;  
bbeta=0.88;  
lambda=2.25;  
 
function [H] = Heavyside(x)  
     // Heavyside function  
     H = bool2s(x>=0)  
     // notice that Heavyside(0)=1  
 endfunction  
 
function u=utility(x)  
  u=Heavyside(x).*x^alpha - lambda* Heavyside(-x).* (-x)^bbeta  
endfunction  
 
function v=CPT_eval(lotery,anchor)  
values=lotery(1,:)-anchor;  
probabilities=lotery(2,:);  
//  
ind_plus=find(values > 0) ;  
values_plus=values(values > 0) ;  
proba_plus = probabilities(ind_plus);  
aborp_plus=proba_plus($:(-1):1);  
utility_plus=utility(values_plus) ;  
weighting_plus= weight ( aborp_plus , ggamma_plus) ;  
//  
ind_minus=find(values <= 0) ;  
values_minus=values(values <= 0) ;  
proba_minus = probabilities(ind_minus);  
utility_minus=utility(values_minus) ;  
weighting_minus= weight ( proba_minus , ggamma_minus) ;  
//  
v= sum(utility_plus .* weighting_plus) + ...  
   sum(utility_minus .* weighting_minus)  
endfunction  
 
//

3.3 Allais’ paradox

Question 11 Same questions as in §2.2, but evaluating lotteries by CPT, with either zero anchor, or a positive one that you will choose.

anchor=0;  
v=CPT_eval(lottery_1Z,anchor)  

3.4 Bank questionnaire

Question 12 Same questions as in §3.4, but evaluating lotteries by CPT, with either zero anchor, or the value of the certain lottery.

  v_C=[];  
  v_R=[];  
 
for k=8:13  
  lottery_C=LOTTERY_C(k);  
  lottery_R=LOTTERY_R(k);  
//  
  anchor=0;  
  anchor=lottery_C(1,:);  
//  
    v_C=[v_C,CPT_eval(lottery_C,anchor)];  
    v_R=[v_R,CPT_eval(lottery_R,anchor)];  
end  
 
TEST_CPT=v_C-v_R  

3.5 Relative risk aversion

Let us consider the problem in Sect. 2. Suppose that you face the risk of gaining or losing a share 𝜃 of your wealth x0 with equal probability. The relative risk premium πCPT (𝜃) is the share of your wealth that you are ready to pay to escape this risk. Expressing indifference between this risk and the certain prospect x0(1 𝜃) gives:

w− (1)U (x (1 − 𝜃) − x (1 − π   (𝜃))) + w+ (1)U (x (1 + 𝜃) − x (1 − π   (𝜃))) = 0.
    2     0           0      CPT            2     0           0      CPT
(12)

Notice that (8) with α = β implies that the evaluation of a prospect with respect to an anchor is invariant with respect to a positive scaling factor (of both the prospect and the anchor). We thus write the above equation with x0 = 1, to obtain:

                      α                         α
λw − (0.5)(𝜃 − πCPT (𝜃 )) = w+ (0.5)(𝜃 + πCP T(𝜃)) .
(13)

In the end

                                       −
πCP-T(𝜃) = ϱ-−-1-≈  0.465 with ϱ = (λw--(0.5))1∕α.
   𝜃       ϱ + 1                     w+ (0.5)
(14)

rho = ( lambda * weight(0.5,ggamma_minus) / ...  
weight(0.5,ggamma_plus) )^{1/alpha}  
 
factor= (rho-1)/(rho+1)  




gaining or losing a share 𝜃 of your wealthCPT relative risk premium


5 % 2.3 %


15 % 7 %


25 % 11.6 %



Table 2: Relative risk premium evaluated by Cumulative Prospect Theory (CPT)

3.6 Compte d’épargne MMmax by Mutuelles du Mans

(From (Pfiffelmann and Roger2005))

The compte d’épargne MMmax was launched in November 2003 by Mutuelles du Mans. This financial product returns 2.5 % for sure every year and, when lucky, additional 5 %, 10 % or 20 % (see details in the Scilab code below). We want to test its success to the public by comparison with a safe product returning a fixed rate every year (anchor).

Question 13 The values for MMmax are given below. Show that its mean return is slightly more than 3.5% Draw the evaluation of this product as function of the anchor for an investor evaluating prospects according to Cumulative Prospect Theory (CPT investor, in short). Observe that any safe product with return more than 3.3% is prefered to the risky MMmax. Conclude that a CPT investor is less encline to invest in MMmax than in safe product, compared to a risk-neutral investor.

//

lotery_MMmax=[1025 1075 1125 1225 ; // return for 1000 euros  
0.81 0.171 0.0171 0.0019] ; // probabilities  
// Compte d'\'epargne MMmax launched in November 2003 by  
// Mutuelles du Mans  
 
disp("=======================================");  
disp("This is the MMmax lotery for an investment of 1000 euros")  
disp(lotery_MMmax)  
 
//=========================================================  
 
function v=scaling(w)  
v=(w-1000)/10; // converts from euros to percents  
endfunction  
 
function w=unscaling(v)  
w=1000 + 10*v ; // converts from percents to euros  
endfunction  
 
function v=RN_eval(lotery,anchor)  
// Risk Neutral evaluation in euros  
v= sum(prod(lotery,'r')) - anchor ;  
endfunction  
 
//=========================================================  
 
exec CPT.sci  
 
mean_MMmax= RN_eval(lotery_MMmax,0) ;  
mean_MMmax_percent=scaling(mean_MMmax);  
 
disp("=======================================");  
disp('The expected return of the MMmax lotery is '...  
+string(mean_MMmax_percent) +'%');  
 
//=========================================================  
 
step=0.01 ;  
anchors_percent=[3.0 : step : (mean_MMmax_percent+20*step) ];  
anchors=unscaling(anchors_percent) ; // return for 1000 euros  
CPT_Values=[];RN_Values=[];  
 
// getf('CPT.sci')  
 
for anchor=anchors  
  CPT_Values=[CPT_Values,CPT_eval(lotery_MMmax,anchor)];  
  RN_Values=[RN_Values,RN_eval(lotery_MMmax,anchor)];  
end  
 
xset('window',30)  
xbasc(); plot2d(anchors_percent,...  
 [ 0*ones(anchors) ; CPT_Values ; RN_Values ]' );  
xtitle('CPT and RN evaluation of MMmax ...  
as function of the anchor','anchor (%)','')  
legends([ 'Cumulative Prospect Theory (CPT)'; 'Risk Neutral (RN)' ] ,...  
[2,3], 'ur' );  
xstring(2.95,-1.5,["RN and CPT prefer" ; "MMax to safe"],0,0)  
xstring(3.3,1.5,["RN prefers MMax to safe but not CPT"],30,1)  
xstring(3.55,0.5,["RN and CPT prefer" ; "safe to MMax"],0,0)  
 
//=========================================================  
 
anchor=1033.37;  
disp("for annual safe return anchor of " +string(scaling(anchor)) +"%, ...  
the CPT evaluation is " +string(CPT_eval(lotery_MMmax,anchor)))  
 
anchor=1033.38;  
disp("for annual safe return anchor of " +string(scaling(anchor)) +"%, ...  
the CPT evaluation is " +string(CPT_eval(lotery_MMmax,anchor)))  
 
// 


PIC

Figure 4: Evaluation of MMmax as function of the anchor. When the evaluation is positive, an investor prefers MMmax to the safe return in abscisse. A risk neutral investor prefers MMmax to any safe return between 3.338% and 3.564%, while this is the contrary for a CPT investor.

References

   Rudiger Frey and Alexander J. McNeil. Var and expected shortfall in portfolios of dependent credit risks: Conceptual and practical insights. Journal of Banking and Finance, 26:1317–1334, 2002.

   C. Gollier. The Economics of Risk and Time. MIT Press, Cambridge, 2001.

   Daniel Kahneman and Amos Tversky. Prospect theory: An analysis of decision under risk. Econometrica, 47(2):263–292, 1979.

   Marie Pfiffelmann and Patrick Roger. Les comptes d’épargne associés à des loteries: approche comportementale et étude de cas. Banque & Marchés, septembre 2005.

   Amos Tversky and Daniel Kahneman. Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4):297–323, October 1992.

L'École des Ponts ParisTech est membre fondateur de

L'École des Ponts ParisTech est certifiée 

ParisTech ParisEst ParisTech

 

Copyright 2014
École des Ponts ParisTech
All rights reserved